H.T.No. \square
Code No: ME1540
GEC-R14

IV B. Tech I Semester Supplementary Examinations, February 2018 HEAT TRANSFER
 (Mechanical Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions Carry Equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Write down one dimensional heat conduction equation in Cartesian coordinate system.
2. What is lumped system analysis?
3. What do you mean by no-slip boundary condition?
4. Define the terms: boiling and condensation.
5. Sketch the temperature distribution of fluids in condenser and evaporator.
6. What is a solid angle? What is its unit?

PART-B

$$
4 \times 12=48 M
$$

1. a) Derive the expression for critical radius of insulation in case of cylinder.
b) A plane wall 10 cm thick, generates heat at the rate of $4 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}$, when an electric current is passed through it. The convective heat transfer coefficient between each face of the wall and ambient air is $50 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, Determine
i) The surface temperature
ii) The maximum temperature of the wall.

Assume ambient air temperature to be $20^{\circ} \mathrm{C}$ and the thermal conductivity of wall material to be $15 \mathrm{~W} / \mathrm{mK}$.
(6M)
2. a) Write the general boundary conditions for longitudinal fin
i) Long fin
ii) Fin with insulated tip
iii) Fin with convection off the end.
b) An aluminum sphere weighing 5.5 kg and initially at a temperature of $290^{\circ} \mathrm{C}$ is suddenly immersed in a fluid at $15^{\circ} \mathrm{C}$. The convective heat transfer coefficient is $58 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Estimate the time required to cool the aluminum to $95^{\circ} \mathrm{C}$.
3. In a straight tube of 60 mm diameter, water flowing at a velocity of $12 \mathrm{~m} / \mathrm{sec}$. The tube surface temperature is maintained at $70^{\circ} \mathrm{C}$ and the flowing water is heated from inlet temperature of $15^{\circ} \mathrm{C}$ to an outlet temperature of $45^{\circ} \mathrm{C}$. Calculate the heat transfer coefficient from the tube surface to the water and the length of the tube.
4. a) A heated polished copper plate is immersed in a pool of water boiling at atmospheric pressure. If the surface temperature of the copper plate is maintained at a temperature of $113^{\circ} \mathrm{C}$, determine the surfaces heat flux and the evaporation rate per unit area of the plate.
b) Show that the average heat transfer for condensation on a vertical plate is $4 / 3$ times the local value at the end of the plate.
5. a) What is parallel flow, counter flow and cross flow heat exchangers? Which is more effective?
b) Water enters a cross flow heat exchanger (both fluids unmixed) at $5^{\circ} \mathrm{C}$ and flows at the rate of $4600 \mathrm{~kg} / \mathrm{hr}$ to cool $4000 \mathrm{~kg} / \mathrm{hr}$ of air that is initially at $40^{\circ} \mathrm{C}$. Assume U value to be $150 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$, for a heat exchanger surface area of $25 \mathrm{~m}^{2}$, calculate the exit temperature of air and water.
6. a) State and prove Kirchhoff's law of radiation.
b) A pipe carrying steam having and outside diameter of 20 cm runs in a large room and is exposed to air at a temperature of $30^{\circ} \mathrm{C}$. The pipe surface temperature is $400^{\circ} \mathrm{C}$.
i) Calculate the loss of heat to surroundings per meter length of pipe due to thermal radiation. The emissivity of the pipe surface is 0.8 .
ii) What would be the loss of heat due to radiation if the pipe is enclosed in a 40 cm diameter brick conduit of emissivity 0.91 ?

