H T No					
11.1.110.					

Code No: ME1508 GEC-R14

II B. Tech I Semester Regular / Suppl. Examinations, November 2017 KINEMATICS OF MACHINES

(Mechanical Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. What is the purpose of using pantograph?
- 2. State the Kennedy's theorem used to locate the instantaneous centres?
- 3. What is a Hooke's joint? Where is it used?
- 4. List different types of followers?
- 5. Write the equation to find the number of teeth in contact of two mating gears?
- 6. What do you mean by compound gear trains?

PART-B

 $4 \times 12 = 48M$

- 1. a) Explain with neat sketch about crank and slotted lever mechanism.
- (6M)

b) Explain the types of constrained motion.

(6M)

- 2. In a four-link mechanism, the crank AB rotates at 36 rad/s. The lengths of the links are: AB= 200 mm, BC= 400 mm, CD= 450 mm and AD= 600 mm. AD is the fixed link. At the instant when AB is at right angle to AD, determine the angular velocity of
 - i) The mid-point of link BC
 - ii) A point on link CD, 100 mm from the pin connecting the links CD and AD. (12M)
- 3. a) Show that Peaucellier mechanism generates straight line motion. (6M)
 - b) Explain Ackermann steering gear mechanism. (6M)
- 4. The following data related to a cam profile in which the follower moves with uniform acceleration and deceleration during ascent and descent. Minimum radius of the cam =25 mm, Roller diameter =7.5mm, Lift =28 mm, Offset of the follower axis =12 mm towards right, Angle of ascent = 60° Angle of descent = 90° Angle of dwell between ascent and descent = 45° , the speed of the cam =200 rpm. Draw the profile of the cam. (12M)
- 5. Two gears in mesh have a module of 8 mm and pressure angle of 20°. The larger gear has 57 teeth while pinion has 23 teeth. If the addenda on pinion and gear wheel are equal to one module. Determine (12M)
 - i) Contact ratio
 - ii) The angles of action of the pinion and the gear wheel
 - iii) the ratio of the sliding velocity to the rolling velocity at the beginning of engagement, at the pitch point and at the end of engagement

6. In the epi-cyclic gear train shown in fig, the compound wheels A and B as well as internal wheels C and D rotate independently about the axis O. The wheels E and F rotate on the pins fixed to arm a. all the wheels are of the same module. The number of the teeth on the wheels are $T_A = 52$, $T_B = 56$, $T_E = T_F = 36$. Determine the speed of C if i) the wheel D fixed and arm a rotates at 200 rpm clockwise. ii) the wheel D rotates at 20 rpm counter-clockwise and the arm a rotates at 200 rpm clockwise. (12M)
