H.T.No. \square
Code No: CT1515
GEC-R14

II B. Tech II Semester Supplementary Examinations, December 2017 DESIGN AND ANALYSIS OF ALGORITHMS

(Information Technology)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Show that $f(n)+g(n)=O\left(n^{2}\right)$ where $f(n)=3 n^{2}-n+4$ and $g(n)=n \log n+5$.
2. Develop the algorithms for simple Union and simple Find.
3. Differentiate between Divide \& Conquer and Greedy approaches.
4. Define Purging rules in $0 / 1$ Knapsack problem.
5. What is Hamiltonian cycle?
6. Write a short note on $L C$ search.

PART-B

$$
\begin{equation*}
4 \times 12=48 M \tag{8M}
\end{equation*}
$$

1. a) Explain the asymptotic notations with an example for each.
b) If K is non negative constant then show than the solution to be given recurrence relation. $\mathrm{T}(\mathrm{n})=\left\{\begin{array}{cc}K & n=1 \\ 3 T(n / 2)+K n & n>1\end{array}\right.$ for n , a power of 2 is $\mathrm{T}(\mathrm{n})=3 \mathrm{~K} n^{\log _{2}^{3}}-2 \mathrm{kn}$ prove this statement.
2. a) Sort the records with the following index values in the ascending order using Quick sort algorithm.
65,70,75,80,60,55,50,45.
b) Explain worst case time complexity of quick-sort.
3. a) Write an General algorithm for greedy method.
b) Find the optimal solution to the job sequencing with deadlines for the following $\mathrm{n}=5,(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5)=(20,15,10,5,1)(\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \mathrm{~d} 5)=(2,2,1,3,3)$.
4. OBST to compute $\mathrm{W}(\mathrm{i}, \mathrm{j}), \mathrm{R}(\mathrm{i}, \mathrm{j})$ and $\mathrm{C}(\mathrm{i}, \mathrm{j}), 0<=\mathrm{i}<\mathrm{j}<=4,\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right)=($ Count, Float, If, While $)$ with $p(1)=1 / 20, p(2)=1 / 5, p(3)=1 / 10, p(4)=1 / 20$ and $q(0)=1 / 5, q(1)=1 / 10, q(2)=1 / 5, q(3)=1 / 20$, $q(4)=1 / 20$ using the $R(i, j)$'s construct OBST.
5. a) Write an Algorithm for N Queens problem.
b) Explain about 4Queen problem with an example.
6. Draw the portion of the state space tree generated by LCKNAP for the Knapsack instances $\mathrm{n}=4, \mathrm{p}(1: 4)=(10,10,12,18) ; \mathrm{w}(1: 4)=(2,4,6,9)$, and $\mathrm{m}=15$.
