\square

III B.Tech I Semester Regular Examinations, November 2016 PULSE AND INTEGRATED CIRCUITS

(Electrical and Electronics Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered in one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks

PART-A

$$
6 \times 2=12 M
$$

1. Draw the output waveforms of Low-pass RC circuit for square wave input.
2. Define the term clipping.
3. Define multivibrator. Mention different types of multivibrators.
4. Mention the characteristics of Practical Op-amp.
5. Draw the circuit diagrams of inverting and non-inverting amplifiers using Op-amp.
6. a) which of the following is suitable for slowly varying signals
i) Dual slope ADC
ii) single slope ADC
iii) Monolithic ADC
iv) All the above
b) A Flash ADC:
i) has greater speed ii) requires large no. of comparators
iii) conversion process takes place simultaneously iv)All the above

PART-B

$4 \times 12=48 M$

1. a) Derive the expressions for the percentage tilt when square wave signal is applied to High-pass RC circuit.
b) Show that average level of the steady state output of High-Pass RC circuit is always zero.
2. a) The input is applied to the clamping circuit shown in Fig. Plot the output waveform when $R_{s}=R_{f}=50 \Omega, R=10 \mathrm{~K}, R_{r}=\infty, \mathrm{C}=1 \mu \mathrm{~F}$.

b) Specify various applications of comparator.
3. a) Explain the operation of monostable multi-vibrator with neat waveforms.
b) Mention the need of commutating capacitors in multi-vibrators.
4. a) What is input offset voltage. Explain the concept of Common Mode Rejection Ratio.
b) Explain the Dominant pole compensation technique with a neat circuit diagram.
5. a) Design a practical differentiator to operate in the input frequency range from 1 kHz to 20 kHz .
b) Draw and explain the operation instrumentation amplifier with necessary equations.
6. a) Explain any two important specifications of converters.
b) Draw and explain the working of Successive approximation ADC.
