H.T.No. \square

II B. Tech II Semester Regular Examinations, April 2017 ELECTROMAGNETIC FIELD THEORY (Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. List the conditions for applying Gauss's to a charge distribution.
2. Differentiate between Potential and Potential Difference.
3. List the properties of conductor placed in an Electric field.
4. State Biot-Savart's law for magneto static field.
5. State Faraday's laws.
6. Define the skin depth and write an expression for it for a good conductor.

PART-B

$4 \times 12=48 M$

1. a) Derive the expression for electric field strength due to uniform charged sphere using Gauss's law.
b) Four like charges of $30 \mu \mathrm{c}$ each are located at the four corners of a square, the diagonal of which measures 8 m . Find the force on the $150 \mu \mathrm{c}$ charge located at 3 m above the center of the square.
2. a) Derive the expression continuity equation of current in integral form. (6M)
b) If $V=2 x^{2} y+20 z-\frac{4}{\left(x^{2}+y^{2}\right)}$ Volts. Find \mathbf{E} and ρ_{v} at $P(6,-2.5,3)$.
3. a) Derive an expression for the capacitance due to concentric spherical conductors with inner radius a and outer radius b.
b) Two homogeneous isotropic dielectrics meet on plane $z=0$. For $Z>0, \varepsilon_{r 1}=4$, and for $\mathbf{z}<0, \varepsilon_{\mathrm{r} 2}=3$. A uniform electric field $\mathbf{E}_{1}=5 \mathbf{a}_{\mathbf{x}}-2 \mathbf{a}_{\mathbf{y}}+3 \mathbf{a}_{\mathbf{z}} \mathrm{KV} / \mathrm{m}$ exists for $Z \geq 0$. Find
i) \mathbf{E}_{2} for $Z \leq 0$
ii) The angles $\mathbf{E}_{\mathbf{1}}$ and $\mathbf{E}_{\mathbf{2}}$ make with the interface.
4. a) Obtain the expression for Magnetic field strength in all the regions if a cylindrical conductor carries a DC current of I and its radius is R m . Plot the variation of H against the distance r from the Centre of the conductor.
b) In cylindrical co-ordinates $\mathbf{A}=50 \mathrm{r}^{2} \mathbf{a}_{\mathbf{z}} \mathrm{wb} / \mathrm{m}$ is a vector magnetic potential, in a certain region of free space. Find \mathbf{H}, \mathbf{B} and \mathbf{J}.
5. a) Derive the expression for the relationship between \mathbf{H} and \mathbf{J} and displacement current $\left(\mathbf{J}_{\mathbf{d}}\right)$.
b) Given that $\mathbf{H}_{\mathbf{1}}=-2 \mathbf{a}_{\mathbf{x}}+6 \mathbf{a}_{\mathbf{y}}+4 \mathbf{a}_{\mathbf{z}} \mathrm{A} / \mathrm{m}$ in a region $\mathrm{y}-\mathrm{x}-2 \leq 0$, where $\mu_{1}=5$ μ_{0}, calculate $\mathbf{B}_{\mathbf{1}}$.
6. a) State and prove poynting theorm for uniform electromagnetic wave.
b) In free space $\mathbf{E}(z, \mathrm{t})=50 \cos (\omega \mathrm{t}-\beta z) \mathbf{a}_{\mathbf{x}}(\mathrm{v} / \mathrm{m})$. Find the direction of progation of wave, amplitude and magnetic field component $\mathbf{H}(z, t)$. $\quad(6 \mathrm{M})$
