		l				
UTN_		l				
H.I.NO.		l				
11.1.140.						

Code No: EC1524 GEC-R14

II B. Tech II Semester Supplementary Examinations, January 2017 CONTROL SYSTEMS

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Write the advantages of feedback control system.
- 2. Define steady state error.
- 3. What is Routh's stability criterion?
- 4. What are the advantages of Bode plot?
- 5. State any four properties of State Transition Matrix.
- 6. Explain sampler and holding operation.

PART-B

 $4 \times 12 = 48M$

1. a) Define closed loop system with an example.

- (4M)
- b) Simplify the block diagram shown in figure below and obtain the transfer function C(s)/R(s). (8M)

- 2. a) For a unity feedback system given by $G(s) = \frac{20 (s+2)}{s (s+3)(s+4)}$ (9M)
 - i) Find the steady state error constants
 - ii) Find the steady state error for r(t) = 3 u(t) + 5 t u(t)
 - b) Explain about standard test signals.

(3M)

- 3. a) List out the procedural steps used to construct the Root Locus. (6M)
 - b) Derive the transfer function of lead compensator and draw its pole-zero plot. (6M)

4. The open loop transfer function of a unity feedback system is given by $G(s) = \frac{1}{s(1+s)(1+2s)}.$

Sketch the polar plot and determine the gain margin and phase margin.

(12M)

- 5. a) Derive the solution for a homogeneous state equation. (4M)
 - b) Obtain the transfer function if $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u; y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (8M)
- 6. Explain in detail about the spectrum analysis of sampling process? (12M)
