H.T.No. \square
Code No: EC1520

II B. Tech II Semester Supplementary Examinations, December 2017
 ANALOG CIRCUITS
 (Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from Part-B. All Questions carry equal Marks.

PART-A

1. What is Millers theorem?
2. What are the advantages of double-tuned amplifier over single-tuned amplifier?
3. What is the need of differential amplifier?
4. Distinguish between negative feedback and positive feedback.
5. Write the conditions for oscillations.
6. Distinguish between class A and class B power amplifiers.

PART-B

$4 \times 12=48 M$

1. a) Draw the high frequency model for BJT.
b) Derive the expressions for the voltage gain and upper cutoff frequency of common source circuit at high frequencies.
2. a) Explain briefly the Darlington pair.
b) Explain the neutralization technique in multi tuned amplifiers.
3. a) Explain the small-signal operation of MOS differential pair.
b) For the following dual input, balanced output differential amplifier, calculate DC operating points. Take $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.2 \mathrm{~V}, \mathrm{R}_{\mathrm{E}}=100 \Omega, \mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega$.

4. a) Explain in detail about effect of negative feedback on amplifier characteristics.
b) For a series-shunt feedback amplifier, if $A=100, B=0.1, R_{i}=1 \mathrm{k} \Omega, R_{o}=50 \Omega$, estimate $R_{i f}, R_{\text {of }}$, A_{f}.
5. a) Draw the circuit diagram and derive the frequency of oscillation of BJT RC phase shift oscillator.
b) In the Hartley oscillator $L_{2}=0.4 \mathrm{mH}, \mathrm{C}=0.004 \mu \mathrm{~F}$. Find L_{1} if the frequency of oscillations is 120 KHz .
6. a) Discuss about conversion efficiency in class A power amplifier.
b) With a neat sketch explain the operation of class AB amplifier.
