\square

II B. Tech I Semester Regular Examinations, November 2016 SIGNALS AND SYSTEMS
 (Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Find the signal energy and power of $\mathrm{e}^{-3|t|}$.
2. What is even symmetry in Fourier series?
3. Derive time convolution property of Fourier Transform.
4. Define system bandwidth and signal bandwidth.
5. If $\sin (\omega)$ is the input PSD, what is the PSD of the output of an ideal differentiator?
6. State final value theorem.

PART-B

$$
4 \times 12=48 M
$$

1. a) A rectangular function $f(t)$ is defined by

$$
\begin{aligned}
f(t) & =1 & & (0<t<\pi) \\
& =-1 & & (\pi<t<2 \pi)
\end{aligned}
$$

Approximate this function by a wave form $\sin t$ over the interval $(0,2 \pi)$ such that the Mean square error is minimum.
b) Prove Orthogonality in complex functions.
2. a) Find the exponential Fourier series of a rectified sine wave $\mathrm{f}(\mathrm{t})=\mathrm{A} \sin \pi \mathrm{t} \quad 0<\mathrm{t}<1 ; \mathrm{T}=1$;
b) Discuss complex Fourier spectrum of periodic functions.
3. a) Find Fourier Transform of an unit step function.
b) Determine Fourier Transform of $g(t)=A \operatorname{rect}(t / T)$.
4. a) Derive relationship between rise time and bandwidth of LPF (RC)
b) Discuss Impulse response of LTI system.
5. a) Calculate PSD and the average power of $g(t)=A_{1} \cos \left(\omega_{1} t+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right)$
b) State properties of auto correlation function of energy signals.
6. Find Laplace Transform and sketch the pole-zero plots with ROC for the following signals?
i) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})+\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})$
ii) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})+\mathrm{e}^{2 \mathrm{t}} \mathrm{u}(-\mathrm{t})$

