Code No: EC1516 GEC-R14

II B. Tech I Semester Regular Examinations, November 2015 SIGNALS AND SYSTEMS

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from PART-A are to be answered at one place.

Answer any **FOUR** questions from **Part-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Define Energy Signal and Power Signal.
- 2. State Dirichlet's Conditions.
- 3. What are the conditions to be satisfied for the existence of Fourier transform.
- 4. State Paley-Wiener Criterion.
- 5. Give the relationship between Convolution and Correlation.
- 6. State the properties of ROC of Laplace Transform

PART-B

 $4 \times 12 = 48M$

- 1. a) Explain the approximation of a function by a set of mutually orthogonal functions (6M)
 - b) Determine Energy and Power of the following signals

(6M)

- (i) $e^{-5t}u(t)$ (ii) $A Sin(\omega t + \theta)$
- 2. a) Derive the relationship between Trigonometric and Exponential Fourier Series. (6M)
 - b) A periodic signal $x(t) = A \sin \omega_0 t : 0 \le t \le \pi$

= 0 : $\pi \le t \le 2\pi$ over one period (0, 2π). Find

Trigonometric Fourier series.

(6M)

(6M)

- 3. a) Find Fourier Transform of the following
 - (i) $e^{-at}u(t)$ (ii) $Sin \omega_0 t$
 - b) State and explain Sampling Theorem

(6M)

4. a) Explain any four properties of LTI systems

(6M)

b) Explain the relationship between Bandwidth and Rise time of LTI system.

(6M)

- 5. a) Explain Power Spectral Density. Derive the relationship between Energy Spectral Density and Auto Correlation function (6M)
 - b) A filter has input $x(t) = e^{-t}u(t)$ and $h(t) = e^{-3t}u(t)$. Find Energy Spectral Density of output. (6M)
- 6. a) Find Unilateral Laplace Transform of the following

(6M)

- (i) $\delta(t)$ (ii) u(t) (iii) tu(t)
- b) Explain any four properties of Unilateral Laplace Transform

(6M)