\square

II B. Tech I Semester Regular Examinations, November 2016 ELECTRONIC DEVICES AND CIRCUITS (Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. The reverse saturation current of a silicon $P N$ junction diode is $10 \mu \mathrm{~A}$. Calculate the diode current for the forward bias voltage of 0.65 V at $27^{\circ} \mathrm{C}$ and also find the current if temperature raised to $37^{\circ} \mathrm{C}$.
2. Find the values of I and V in the figure. (Diodes used are ideal).

3. A FET has driven current of $4 \mathrm{~mA}, \mathrm{I}_{\mathrm{DSS}}=8 \mathrm{~mA}$ and $\mathrm{V}_{P}=6 \mathrm{~V}$. Find the value of V_{GS}.
4. What is body effect?
5. Draw the output characteristics of BJT in common emitter configuration.
6. Draw the frequency response of an amplifier.

PART-B

$$
4 \times 12=48 M
$$

1. a) Derive the diode current equation under forward bias condition.
b) Explain the properties of an equilibrium p-n junction.
2. Explain in detail about modelling the diode forward characteristics.
3. a) With the help of circuit diagram and waveforms, explain the operation of a half- wave rectifier with capacitive filter.
b) Consider a peak rectifier fed by a 50 Hz sinusoid having a peak value $\mathrm{V}_{\mathrm{p}}=100 \mathrm{~V}$. Let a load resistance $\mathrm{R}=10 \mathrm{~K} \Omega$. Find the value of capacitance that will result in a peak -peak ripple of 2 V .
4. a) Explain the operation of an n-channel enhancement mode MOSFET and draw its $i_{D}-v_{D S}$ characteristics.
b) Consider an n-channel MOSFET with $\mathrm{t}_{\mathrm{ox}}=20 \mu \mathrm{~m}, \mu_{\mathrm{n}}=650 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$, $\mathrm{V}_{\mathrm{t}}=0.7 \mathrm{~V}$ and $\mathrm{W} / \mathrm{L}=10$. Find the drain current for the following: i) $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$ and $V_{D S}=1 \mathrm{~V}$, ii) $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}$.
5. a) Explain how BJT acts as an amplifier in detail.
b) Assume that a silicon transistor with $\beta=50, \mathrm{~V}_{\mathrm{BE}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=22.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{C}}=5.6 \mathrm{~K} \Omega$ is used self bias circuit. It is desired to establish a Q-point at $\mathrm{V}_{\mathrm{CE}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~mA}$, and a stability factor $\mathrm{S} \leq 3$. Calculate the values R_{e}, R_{1} and R_{2}.
6. a) A MOSFET connected in the CS configuration has a transconductance $g_{m}=5 \mathrm{~mA} / \mathrm{V}$. When a resistance R_{s} is connected in the source lead, the effective transconductance is reduced to $1 \mathrm{~mA} / \mathrm{V}$. Estimate the value of R_{s}.
(4M)
b) Using circuit diagram and small-signal model, derive expressions for $\mathrm{A}_{\mathrm{i}}, \mathrm{R}_{\mathrm{i}}$, A_{v} and R_{o} of a BJT common-emitter amplifier at low frequencies.
