OH.T.No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Code No: EC1514 GEC-R14

II B. Tech I Semester Regular Examinations, November 2016

ELECTRONIC DEVICES AND CIRCUITS

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. The reverse saturation current of a silicon PN junction diode is 10µA.Calculate the diode current for the forward bias voltage of 0.65V at 27°C and also find the current if temperature raised to 37°C.
- 2. Find the values of I and V in the figure. (Diodes used are ideal).

- 3. A FET has driven current of 4mA, I_{DSS} =8mA and V_P =6V. Find the value of $V_{GS.}$
- 4. What is body effect?
- 5. Draw the output characteristics of BJT in common emitter configuration.
- 6. Draw the frequency response of an amplifier.

PART-B

 $4 \times 12 = 48M$

- 1. a) Derive the diode current equation under forward bias condition. (7M)
 - b) Explain the properties of an equilibrium p-n junction. (5M)
- 2. Explain in detail about modelling the diode forward characteristics. (12M)
- 3. a) With the help of circuit diagram and waveforms, explain the operation of a half- wave rectifier with capacitive filter. (8M)
 - b) Consider a peak rectifier fed by a 50Hz sinusoid having a peak value V_p =100V. Let a load resistance R=10 K Ω . Find the value of capacitance that will result in a peak –peak ripple of 2V. (4M)
- 4. a) Explain the operation of an n-channel enhancement mode MOSFET and draw its $i_D v_{DS}$ characteristics. (8M)

- b) Consider an n-channel MOSFET with t_{ox} = 20 μ m, μ_n =650 cm²/V-s, V_t=0.7V and W/L=10. Find the drain current for the following: i) V_{GS}=5V and V_{DS}=1V, ii) V_{GS}= V_{DS} =5V. (4M)
- 5. a) Explain how BJT acts as an amplifier in detail. (6M)
 - b) Assume that a silicon transistor with β =50, V_{BE} =0.6V, V_{CC} =22.5V and R_{C} =5.6K Ω is used self bias circuit. It is desired to establish a Q-point at V_{CE} =12V, I_{C} =1.5mA, and a stability factor $S \le 3$.Calculate the values R_{e} , R_{1} and R_{2} .
- 6. a) A MOSFET connected in the CS configuration has a transconductance g_m =5mA/V. When a resistance R_s is connected in the source lead, the effective transconductance is reduced to 1mA/V. Estimate the value of R_s . (4M)
 - b) Using circuit diagram and small-signal model, derive expressions for A_i , R_i , A_v and R_o of a BJT common-emitter amplifier at low frequencies. (8M)
