H.T.No. $\square$
Code No: EC1515

## II B. Tech I Semester Regular / Suppl. Examinations, November 2017 DIGITAL CIRCUITS

(Electronics and Communication Engineering)

## Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

## PART-A

$$
6 \times 2=12 M
$$

1. What is 1 's complement representation method?
2. Realize the EX-OR function using NAND gates.
3. Draw the full subtractor logic diagram using only 2-input NAND gates.
4. Explain emitter coupled logic.
5. Give the differences between synchronous and asynchronous counters.
6. What are the limitations of finite state machines?

## PART-B

$$
4 \times 12=48 \mathrm{M}
$$

1. a) Perform the following decimal subtractions in BCD by the 9 's complement method.
A) 448.3-242.2
B) 0345.5-453.7
b) The message below coded in the 7-bit hamming code is transmitted through a noisy channel. Decode the message assuming that at most a single error occurred in each code word.
1001001,0111001,1000110,1100100
2. a) Design a binary to gray code converter using k-map.
b) Reduce the following function using k-map
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\prod \mathrm{M}(4,5,6,7,8,12,13)+\mathrm{d}(1,15)$
3. a) Explain carry look ahead adder circuit.
b) Design a BCD adder circuit diagram.
4. a) Give the comparison of PROM, PLA and PAL.
b) Explain transistor transistor logic in detail.
5. a) Design a decade counter using JK flip flop.
b) Convert JK flip flop to D flip flop.
6. a) Determine a minimal state table equivalent to the state table given using partition method.

| $\mathbf{P S}$ | $\mathbf{N S}, \mathbf{Z}$ |  |
| :---: | :---: | :---: |
|  | $\mathbf{X}=\mathbf{0}$ | $\mathbf{X}=\mathbf{1}$ |
| A | $\mathrm{E}, 0$ | $\mathrm{D}, 1$ |
| B | $\mathrm{~F}, 0$ | $\mathrm{D}, 0$ |
| C | $\mathrm{E}, 0$ | $\mathrm{~B}, 1$ |
| D | $\mathrm{F}, 0$ | $\mathrm{~B}, 0$ |
| E | $\mathrm{C}, 0$ | $\mathrm{~F}, 1$ |
| F | $\mathrm{~B}, 0$ | $\mathrm{C}, 0$ |

b) Design a sequential circuit for the sequence detector 1110 using D flip-flops.

