ЦТ No					
H.1.NO.					

Code No: EC1515 GEC-R14

II B. Tech I Semester Regular / Suppl. Examinations, November 2017 DIGITAL CIRCUITS

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. What is 1's complement representation method?
- 2. Realize the EX-OR function using NAND gates.
- 3. Draw the full subtractor logic diagram using only 2-input NAND gates.
- 4. Explain emitter coupled logic.
- 5. Give the differences between synchronous and asynchronous counters.
- 6. What are the limitations of finite state machines?

PART-B

 $4 \times 12 = 48M$

1. a) Perform the following decimal subtractions in BCD by the 9's complement method.

A) 448.3-242.2

B) 0345.5-453.7

(6M)

b) The message below coded in the 7-bit hamming code is transmitted through a noisy channel. Decode the message assuming that at most a single error occurred in each code word.

(6M)

1001001,0111001,1000110,1100100

2. a) Design a binary to gray code converter using k-map.

(6M)

b) Reduce the following function using k-map

$$F(A,B,C,D) = \prod M(4,5,6,7,8,12,13) + d(1,15)$$

(6M)

3. a) Explain carry look ahead adder circuit.

(6M)

b) Design a BCD adder circuit diagram.

(6M)

4. a) Give the comparison of PROM, PLA and PAL.

(6M)

b) Explain transistor transistor logic in detail.

(6M)

5. a) Design a decade counter using JK flip flop.

(6M)

b) Convert JK flip flop to D flip flop.

(6M)

6. a) Determine a minimal state table equivalent to the state table given using partition method.

DC	NS,Z					
PS	X=0	X=1				
A	E,0	D,1				
В	F,0	D,0				
С	E,0	B,1				
D	F,0	В,0				
Е	C,0	F,1				
F	В,0	C,0				

b) Design a sequential circuit for the sequence detector 1110 using D flip-flops. (6M)
