H.T.No. \square
Code No: CS1503
GEC-R14

II B. Tech II Semester Regular Examinations, April 2017 ADVANCED DATA STRUCTURES (Computer Science and Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. What is Double Hashing?
2. What are the properties of heap trees?
3. What are the double rotations in AVL?
4. a) Give any two applications of B^{+}tree.
b) Give the time complexity of B^{+}tree search operation.
5. Give any two differences between Prim's and Kruskal's algorithms.
6. Explain Looking-Glass heuristic.

PART-B

$$
4 \times 12=48 M
$$

1. a) Consider the hash table of size 11 and construct the closed hash table for the input $22,34,64,88,29,54,99$ using the hash function $h(k)=k \bmod m$ and use linear probing for collision resolution.
b) Construct the open hash table of size 10 for the input: $84,75,104,31$, $39,95,66,27$, and 84 using the multiplication method.
2. a) Differentiate Max Heap tree and Min Heap tree with an example.
b) Construct Min Binomial queue with the following elements. $39,42,66,78,76,104,208,13,44,26,32,49$.
3. a) Start with an empty AVL search tree and insert the following elements in the given order. $100,50,75,150,120,200,45,30$. Now delete the nodes $150,45,50$ and 30.
b) Start with an empty splay tree and insert the keys $8,11,9,6,5,7,10$. Now delete the nodes 7 and 5 .
4. a) Illustrate with examples Insertion operation on B-tree.
b) Start with an empty B^{+}tree of order 4 and insert the keys $12,1,11,61$, $71,41,31,81,91,101$ and 111 in this order. Draw the B^{+}tree for each insertion.
5. For the following graph find the shortest paths from vertex P to all destinations, specify each step.

6. a) Discuss the Knuth Morris Pratt pattern matching algorithm with an example.
b) Define Binary trie? Construct a Binary trie for the keys 1001, 0100, 0000, 1111, 0110, 0101, 1110.
