H.T.No.

GEC-R14 II B. Tech I Semester Regular / Suppl. Examinations, November 2017 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 Hours

Code No: CT1508

Note: All Questions from PART-A are to be answered at one place. Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

- 1. a) Write the differences between NFA and DFA.
 - b) What is the difference between empty language and null string?
- 2. Write formal definition of moore machine with an example.
- 3. Construct regular expression for set of all strings with at least one 0, one 1 and one 2 respectively.
- 4. Show the Venn diagram of Chomsky hierarchy language and their counterpart automata.
- 5. Prove that $L=\{WW | w \text{ is bit string}\}$ is not Context Free Language.
- 6. Explain about Posts Correspondence problem.

PART-B

1. a) Design a DFA for a language which contains strings of a's & b's and each string ends with aab. (6M)

0

 $\{p,q\}$

r

S

S

b) Design a NFA to accept strings of 0's & 1's such that each string ends with 00. (6M)

1

р

r

-

S

2. a) Convert the following NFA to DFA.

b)	Find whether the	following two	FSM are	equivalent	or not.
- /				1	

δ

→p

q

r

*s

$4 \times 12 = 48M$

Max. Marks: 60

 $6 \times 2 = 12M$

(6M)

(6M)

3. a) Show that $L=\{a^P | P \text{ is a prime number}\}$ is not regular.

b

b) Construct the regular expression for the following DFA. (6M)

	а	b
$\rightarrow q_0^*$	q1	q0
q_1	q0	q1

4. a) Convert the following DFA to Regular grammar.

qO

q2

5. Show that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not a context free language. (12M)

→(q1

- 6. a) Construct a Turing machine M for $\sum = \{a, b\}$ which will convert lower case letters to upper case. (6M)
 - b) Construct a Turing machine M, which recognizes the language L= {w c w $| w \in (a + b)^+$ }.

(6M)

(6M)

(6M)

