11.1.140.

Code No: CT1508 GEC-R14

II B. Tech I Semester Supplementary Examinations, January 2017 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Design a DFA to accept strings of a's and b's having even number of a's and b's.
- 2. For the NFA given below;
 - i. Check whether the string axxaxxa is accepted or not
 - ii. Give atleast two transition paths

- 3. Obtain a regular expression for $L = \{ VUV \mid U, V \in \{a,b\}^* \text{ and } |V| = 2 \}$.
- 4. Is the following grammar ambiguous?

S-> AB | aaB

A->a|Aa

B->b

5. Identify the nullable variables from the following CFG

S \rightarrow ABCa | bD, A \rightarrow BC | b, B \rightarrow b | ϵ , C \rightarrow c | ϵ , D \rightarrow d

6. Explain individually classes P and NP.

PART-B

- 1. a) Construct a finite state automata that accepts those strings over {a,b} that contains *aaa* as substring. (6M)
 - b) Construct a DFA equivalent to $M=(\{q_0,q_1\},\{a,b,c\},\delta,q_0,\{q_1\})$ where δ is given in the following table. (6M)

δ	а	В	С
\mathbf{q}_0	$\{q_0,q_1\}$	{q ₁ }	Ø
\mathbf{q}_1	Ø	$\{q_0,q_1\}$	$\{ q_1 \}$

2. a) Construct a NFA without \in for the following NFA with \in .

(6M)

b) Construct a Mealy machine which is equivalent to the Moore machine given in table. (6M)

Present State	Next State		Output
	A=0	A=1	
→ q ₀	\mathbf{q}_3	\mathbf{q}_1	0
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2	1
\mathbf{q}_2	\mathbf{q}_2	q 3	0
q ₃	q ₃	q ₀	0

- 3. a) Let G be the grammar. $S \rightarrow aS \mid aSbS \mid \epsilon$. Prove that $L(G) = \{x \mid \text{ such that each prefix of } x \text{ has at least as many a's as b's}\}$. (6M)
 - b) Using pumping lemma show that the following sets are not regular:

a)
$$\{a^n b^{2n} \mid n > 0\}$$

b)
$$\{a^nb^m \mid 0 < n < m\}$$
 (6M)

4. a) Eliminate epsilon productions from the grammar `G' given as

$$B-> aB|bB| \in$$
 (6M)

- b) Give CFG for generating odd palindromes over the string {a,b}. (6M)
- 5. a) Convert the following Grammar into CNF.

$$S \rightarrow AbcD / abc$$

$$A \rightarrow aASB / d$$

$$B \rightarrow b/cb$$

$$D \to d$$
 (6M)

b) Convert the following Context Free Grammar to Push Down Automata.

$$S \rightarrow aAA$$

$$A \rightarrow aS \mid bS \mid a$$
 (6M)

- 6. a) Obtain a Turing machine to recognize $0^n1^n2^n$. Ex: 000111222..... (6M)
 - b) Explain in detail about posts correspondence problem and 2-way infinite Turing machine. (6M)
