\square
Code No: CT1508
GEC-R14
II B. Tech I Semester Supplementary Examinations, January 2017 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer Science and Engineering)

Time: 3 Hours

Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Design a DFA to accept strings of a's and b's having even number of a's and b's.
2. For the NFA given below;
i. Check whether the string axxaxxa is accepted or not
ii. Give atleast two transition paths

3. Obtain a regular expression for $\mathrm{L}=\left\{\mathrm{VUV} \mid \mathrm{U}, \mathrm{V} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and $\left.|\mathrm{V}|=2\right\}$.
4. Is the following grammar ambiguous?

S-> AB|aaB
A-> $\mathrm{a} \mid \mathrm{Aa}$
B->b
5. Identify the nullable variables from the following CFG
$\mathrm{S} \rightarrow \mathrm{ABCa}|\mathrm{bD}, \mathrm{A} \rightarrow \mathrm{BC}| \mathrm{b}, \mathrm{B} \rightarrow \mathrm{b}|\varepsilon, \mathrm{C} \rightarrow \mathrm{c}| \varepsilon, \mathrm{D} \rightarrow \mathrm{d}$
6. Explain individually classes P and NP.

PART-B

1. a) Construct a finite state automata that accepts those strings over $\{a, b\}$ that contains aaa as substring.
b) Construct a DFA equivalent to $\mathrm{M}=\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{1}\right\}\right)$ where δ is given in the following table.

δ	a	B	c
q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{1}\right\}$	\varnothing
q_{1}	\varnothing	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{1}\right\}$

2. a) Construct a NFA without \in for the follwing NFA with \in.

b) Construct a Mealy machine which is equivalent to the Moore machine given in table.

Present State	Next State		Output
	$\mathrm{A}=0$	$\mathrm{~A}=1$	
$\boldsymbol{\rightarrow} \mathrm{q}_{0}$	q_{3}	q_{1}	0
q_{1}	q_{1}	q_{2}	1
q_{2}	q_{2}	q_{3}	0
q_{3}	q_{3}	q_{0}	0

3. a) Let G be the grammar. $S \rightarrow a S|a S b S| \varepsilon$. Prove that $L(G)=\{x \mid$ such that each prefix of x has atleast as many a's as b's\}.
b) Using pumping lemma show that the following sets are not regular:
a) $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}} \mid \mathrm{n}>0\right\}$
b) $\left\{a^{n b m} \mid 0<n<m\right\}$
4. a) Eliminate epsilon productions from the grammar 'G' given as
$\mathrm{A}->\mathrm{aBb} \mid \mathrm{bBa}$
B-> $a B|b B| \epsilon$
b) Give CFG for generating odd palindromes over the string $\{a, b\}$.
5. a) Convert the following Grammar into CNF.
$\mathrm{S} \rightarrow \mathrm{AbcD} / \mathrm{abc}$
A \rightarrow aASB / d
$\mathrm{B} \rightarrow \mathrm{b} / \mathrm{cb}$
$\mathrm{D} \rightarrow \mathrm{d}$
b) Convert the following Context Free Grammar to Push Down Automata.
$\mathrm{S} \rightarrow \mathrm{aAA}$
$\mathrm{A} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a}$
6. a) Obtain a Turing machine to recognize $0^{n} 1^{n} 2^{n}$. Ex: 000111222......
b) Explain in detail about posts correspondence problem and 2-way infinite Turing machine.
