H.T.No.					

Code No: MA1506

GEC-R14

II B. Tech I Semester Regular Examinations, November 2016 DISCRETE MATHEMATICAL STRUCTURES

(Common to Computer Science and Engineering & Information Technology)

Time: 3 Hours Max. Marks: 60

Note: All Questions from ${\bf PART-A}$ are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Negate the proposition "If the processor is fast then the printer is slow".
- 2. If $f: IR \to IR$ and $f: IR \to IR$ such that f(x) = 2x + 1 and g(x) = x/3 find $(gof)^{-1}(x)$, where IR denotes the set of real numbers.
- 3. Define an algebraic structure and give an example.
- 4. Write the no. of edges in K_n and $K_{m,n}$.
- 5. Define Hamiltonian Graph.
- 6. Solve the Recurrence Relation $a_n 7a_{n-1} + 12a_{n-2} = 0$, for $\forall n \ge 2$.

PART-B

 $4 \times 12 = 48M$

- 1. a) Obtain the sum of products canonical form (PDNF) for the formula $(p \wedge q) \vee (\neg p \wedge r) \vee (q \wedge r)$. (6M)
 - b) Are the propositional functions $p \to (q \to r)$ and $(p \to q) \to r$ logically equivalent? Justify your answer? (6M)
- 2. a) Prove that the relation "congruence modulo m" is an equivalence relation in the set of integers. (6M)
 - b) Define partial order relation. Prove that the relation '⊆' of set inclusion is a partial order one on P(A), the power set of the set A={a, b, c}. Draw the Hasse diagram for this relation. (6M)
- 3. a) Prove that the set G={0, 1, 2,3,4} forms a finite abelian group of order 5 under the composition as addition modulo 5. (6M)
 - b) In the set of integers $Z \{1\}$, show that the operation '0' defined by a0b = a + b ab, for all $a, b \in Z \{1\}$ forms an infinite abelian Group. (6M)
- 4. a) when it can be said that two graphs G_1 and G_2 are isomorphic? How can it be discovered? Explain with example. (6M)

- b) Define the following with example.
 - (i) Euler path (ii) Euler circuit (iii) Eulerian Graph (6M)
- 5. a) What is Hamiltonian cycle? Discuss the Hamiltonian cycle in K_5 . (6M)
 - b) Find the chromatic number of the following Graphs (6M)
 - (i) $K_{3,3}$ (ii) Tree (iii) W_5
- 6. a) Solve the Recurrence Relation $a_n 6a_{n-1} + 8a_{n-2} = 9$, $\forall n \ge 2$, with initial conditions $a_0 = 10$ and $a_1 = 25$. (6M)
 - b) Solve the Recurrence Relation $a_n = a_{n-1} + n(n-1)$, for $n \ge 1$, by substitution method, given $a_0 = 1$. (6M)
