\square
Code No: CT1505
GEC-R14

II B.Tech I Semester Regular Examinations, November 2016 DIGITAL LOGIC DESIGN
 (Common to Computer Science and Engineering \& Information Technology)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Convert (123) ${ }_{10}$ into ()$_{6}$?
2. State the Duality principle with example.
3. Compare serial adder and parallel adder
4. What is Encoder? Give an example.
5. Give the Excitation table of S-R flip-flop.
6. Differentiate between synchronous and asynchronous counters.

PART-B

$4 \times 12=48 M$

1. a) Convert the following
i) (643.512) 10 to excess- 3 code
ii) $(96.42)_{10}$ to BCD code
iii) Gray code (110101) into binary code
b) Perform the following operations using 2's complement method
i) $(1010) 2-(1111) 2$
ii) $(1010)_{2}-(1000)_{2}$
iii) $(001110)_{2}+(110010)_{2}$
2. a) Express the following functions in sum of min-terms and product of maxterms.
i) $(x y+z)(y+x z)$
ii) $B^{1} D+A^{1} D+B D$
b) Simplify the following Boolean function using K-map $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(1,4,5,6,12,14,15)$
3. a) With the help of logic diagram and example explain 4-bit ripple adder/ subtractor using 2's complement method.
b) Design Half Subtractor.
4. a) Implement 16X1 multiplexer by using two 8X1 multiplexers and one 2X1 multiplexer.
b) Implement the following Boolean functions using Decoder and OR gate $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(3,5,6)$ $\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(1,4)$ $\mathrm{F}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(2,3,5,6)$
5. a) Convert a J-K flip-flop into D Flip-flop
b) Draw the circuit diagram of J-K flip flop with NAND gates explain its operation with the help of a truth table.
6. a) Explain in detail about Universal Shift Register
b) Design mod- 6 counter
