H.T.No	
Code No: CT1505	GEC-R14
II B.Tech I Semester Regular B	Examinations, November 2016
DIGITAL LOGIC DESIGN (Common to Computer Science and Engineering & Information Technology)	
Note: All Questions from PART-A are to be answered at one place. Answer any FOUR questions from PART-B. All Questions carry equal Marks.	
PART-A	
	$6 \times 2 = 12M$
1. Convert $(123)_{10}$ into $()_6$?	
2. State the Duality principle with exam	ple.
3. Compare serial adder and parallel adder	
4. What is Encoder? Give an example.	
5. Give the Excitation table of S-R flip-fle	op.
6. Differentiate between synchronous and asynchronous counters.	
PART-B	
	$4 \times 12 = 48M$
1. a) Convert the following	
i) (643.512) $_{10}$ to excess-3 code	ii) (96.42) ₁₀ to BCD code
iii) Gray code (110101) into binary code (6M)	
b) Perform the following operations u	sing 2's complement method
i) (1010)2 - (1111)2	ii) (1010)2 - (1000) ₂
iii) (001110) ₂ +(110010) ₂	(6M)
2. a) Express the following functions in sum of min-terms and product of maxterms.	
i) (xy+z) (y+xz)	
ii) B¹D+A¹D+BD	(6M)
b) Simplify the following Boolean function using K-map	
$F(W,X,Y,Z)=\sum (1,4,5,6,12,14,15)$	(6M)
3. a) With the help of logic diagram and	example explain 4-bit ripple adder/

subtractor using 2's complement method.

b) Design Half Subtractor.

(8M)

(4M)

- 4. a) Implement 16X1 multiplexer by using two 8X1 multiplexers and one 2X1 multiplexer. (6M)
 - b) Implement the following Boolean functions using Decoder and OR gate $F_1(A,B,C) = \sum (3,5,6)$

$$F_2(A,B,C) = \sum (1,4)$$

$$F_3(A,B,C) = \sum (2,3,5,6)$$
 (6M)

- 5. a) Convert a J-K flip-flop into D Flip-flop
 - b) Draw the circuit diagram of J-K flip flop with NAND gates explain its operation with the help of a truth table. (6M)
- 6. a) Explain in detail about Universal Shift Register (7M)
 - b) Design mod-6 counter (5M)

(6M)