I B.Tech. II Semester Regular Examinations, June 2015 NETWORK ANALYSIS
 (Electronics \& Communication Engineering)

Time: 3 Hours
Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B.

PART-A

$$
6 \times 2=12 M
$$

1. Define super node and super mesh.
2. Find the phase angle between
$\mathrm{i}_{1}=-4 \operatorname{Sin}\left(377 \mathrm{t}+25^{\circ}\right)$ and $\mathrm{i}_{2}=5 \operatorname{Cos}\left(377 \mathrm{t}-40^{\circ}\right)$. Does i_{1} lead or lag i_{2}.
3. What is the condition for resonance in series R-L-C circuit and write expression for Resonant frequency f_{n}.
4. State and explain Compensation theorem.
5. Derive interrelationship between Y and ABCD parameters.
6. Explain time constant of series R-L circuit in Transient analysis.

PART-B

$$
4 \times 12=48 \mathrm{M}
$$

1. a) In the circuit shown in Fig 1a, calculate the current i, the conductance G and the power P ?

Figure 1a
b) For the circuit shown in Fig 1b, find the node voltages?

Figure 1b
2. a) Find $v(t)$ and $i(t)$ in the circuit shown in Fig $2 a$?

Figure 2a
b) Find the RMS value of the current waveform shown in Figure 2b. If the Current flows through a 9Ω resistor, calculate the average power absorbed by the resistor?

Figure 2b
3. a) Derive the expression for Bandwidth of a series resonant circuit and explain with the help of sketches how bandwidth varies with quality factor.
b) A series connected circuit has $\mathrm{R}=4 \Omega$ and $\mathrm{L}=25 \mathrm{mH}$
(i) Calculate the value of C that will produce a quality factor of 50 .
(ii) Find ω_{1}, ω_{2} and BW
(iii) Determine the average power dissipated at $\omega=\omega_{o}, \omega_{1}, \omega_{2}$. Take

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}}=100 \mathrm{~V} \tag{6M}
\end{equation*}
$$

4. a) State and explain Maximum Power Transfer theorem?
b) Find the Norton Equivalent circuit for the circuit shown in Figure4?

Figure 4.
5. a) Determine the Z parameters of the network shown in figure 5a? (6M)

Fig. 5a
b) Find the h-parameters for the two port network shown in fig. 5 b (6M)

Fig. 5b
6. a) Explain the behaviour of a RL circuit when the input is a step function?
b) The switch in Fig 6 has been in position A for a long time. At $t=0$, the switch moves to B. Determine $v(t)$ for $t>0$ and calculate its value at $\mathrm{t}=1 \mathrm{~s}$ and 4 s ?

Fig. 6

