|--|

Code No: MA1503

GEC-R14

I B. Tech II Semester Supplementary Examinations, January 2017

MATHEMATICS-II

(Common to All Branches)

Time: 3 Hours

Max. Marks: 60

Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B.

PART-A

 $6 \times 2 = 12M$

- 1. Define consistency and inconsistency of Linear system of equations.
- 2. Find the sum and product of the Eigen values of $\begin{bmatrix} 3 & 0 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.
- 3. If the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$ exist, then obtain a_0 .
- 4. Write the formula for the Fourier transform of f(x).
- 5. Solve p + q = pq.
- 6. Write the Laplace equation in two dimensional steady state heat flow.

PART-B

 $4 \times 12 = 48M$

1. a) Test for consistency and solve

$$2x - 3y + 7z = 5$$
$$3x + y - 3z = 13$$
$$2x + 19y - 47z = 32$$

(6M)

b) Determine the currents I_1 , I_2 and I_3 for the following electrical network using Kirchoff's laws. (6M)

- 2. Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ (12M)
- 3. a) Find the Fourier series to represent the function f(x) given by f(x) = x for $0 \le x \le \pi$ (6M)
 - b) Find the half range cosine series for $f(x) = (x 1)^2$ in the interval 0 < x < 1. (6M)
- 4. a) Find the Fourier transform of $f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$ (6M)
 - b) Find the Fourier sine transform of $\frac{1}{x(x^2+a^2)}$ (6M)
- 5. a) Solve (y+z)p (z+x)q = x y. (6M)
 - b) Solve $1 + p^2 = qz$ by charpits method (6M)
- 6. A homogeneous rod conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$u(x,0) = \begin{cases} x, & 0 \le x \le 50\\ 100 - x, & 50 \le x \le 100. \end{cases}$$

Find the temperature u(x, t) at any time. (12M)
