H.T.No.

Code No: PH1501 GEC-R14

I B. Tech II Semester Regular/Suppl. Examinations, May 2016

Engineering Physics

(Common to Electronics and Communication Engineering, Computer Science and Engineering and Information Technology)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **Part-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Calculate the thickness of a wave plate to produce circularly polarized light for wavelength of 5893 x 10^{-10} m. Take $\mu_o=1.486$ and $\mu_e=1.658$.
- 2. What is the principle behind propagation of light in optical fibers.
- 3. Distinguish between amorphous and crystalline solids.
- 4. Super conductor exhibits perfect diamagnetism. Prove the statement.
- 5. Does P-type semiconductor have more positive charge associated? Explain.
- 6. What is the purpose of Active medium in LASERS?

PART-B

 $4 \times 12 = 48M$

- 1. a) Discuss the phenomenon of interference of light due to thin films of uniform thickness and find the condition of maxima and minima. (8M)
 - b) A parallel beam of light (λ = 5890 X 10⁻⁸ cm) is incident on a thin glass plate (μ =1.5) such that the angle of refraction into the plate is 60°. Compute the smallest thickness of the glass plate which will appear dark by reflection. (4M)
- 2. a) Explain the different types of optical fibres along with the refractive index profile and mode propagation sketches. (8M)
 - b) Explain the characteristics of lasers. (4M)
- 3. a) Derive the expression for inter planar distance in cubic crystals. What are the characteristics of Miller indices? (8M)
 - b) What is the angle at which the third order reflection of X-rays of 0.79×10^{-8} cm wavelength can occur in a calcite crystal of 3.04×10^{-8} cm spacing. (4M)
- 4. a) Derive the expression for the field experienced by an electron inside a dielectric. (8M)

- b) Draw and explain the B-H curve for a ferromagnetic material placed in a magnetic field. (4M)
- 5. a) State Hall effect. With a neat diagram derive the expression for Hall coefficient. (6M)
 - b) Obtain an expression for number of electrons per unit volume in the conduction band of an intrinsic semiconductor. (6M)
- 6. a) What is Fermi Dirac distribution function? What is the significance of Fermi Dirac distribution function? (4M)
 - b) Show that when an electron travels in periodic potential provided by the lattice, it experiences allowed energy bands separated by forbidden regions. (8M)
