H.T.No.										
---------	--	--	--	--	--	--	--	--	--	--

Code No: PH1501 GEC-R14

I B. Tech II Semester Supplementary Examinations, December 2017 ENGINEERING PHYSICS

(Common to Electronics and Communication Engineering, Computer Science and Engineering and Information Technology)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Define Resolving power.
- 2. What are the conditions under which total internal reflection takes place?
- 3. Define unit cell. How many effective numbers of atoms a unit cell of FCC lattice contain?
- 4. What is the reason for persistent current in superconductors?
- 5. Write any two differences between direct and indirect band gap semiconductor?
- 6. An electron is bound in one dimensional infinite well of width 1 X 10⁻¹⁰m. Find the energy value in the ground state.

PART-B

 $4 \times 12 = 48M$

- 1. a) Derive an expression for maxima and minima intensity due to interference of reflected light from surface of a thin film. (8M)
 - b) The refractive indices of mica for ordinary and extraordinary rays are 1.586 and 1.592 with a wavelength of 5460 A^0 . Find the thickness of mica sheet to act as a quarter wave plate. (4M)
- 2. a) Derive the relation between the probabilities of spontaneous and stimulated emissions in terms of Einstein's coefficients. (6M)
 - b) Derive an expression for Numerical aperture of an optical fibre. (6M)
- 3. a) Describe the seven crystal systems with neat diagrams. (6M)
 - b) What are Miller indices? How are they determined? (6M)
- 4. a) Define Meissner effect. Classify Type -I and Type -II superconductors on the basis of Meissner effect. (8M)
 - b) The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contain 2.7×10^{25} atoms per m³. (4M)

- 5. a) What do you understand by drift and diffusion currents in case of semiconductors?

 Deduce Einstein's relations related to these currents. (8M)
 - b) State and explain Hall effect. (4M)
- 6. a) Show that the energies of a particle in a potential box are quantized. (6M)
 - b) What are the draw backs of classical free electron theory? Write assumptions of quantum free electron theory. (6M)
