_		 	 		
H.T.No.					

Code No: CT1503 GEC-R14

I B. Tech II Semester Regular/Suppl. Examinations, May 2016 DATA STRUCTURES

(Electronics and Communication Engineering and Information Technology)

Time: 3 Hours Max. Marks: 60

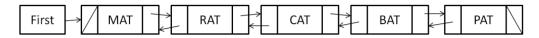
Note: All Questions from PART-A are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Define linked list. Draw a double linked list with header node.
- 2. Define the terms PUSH and POP used in stack.
- 3. Define the ADT of a circular queue.
- 4. Draw the expression tree for the given infix expression.

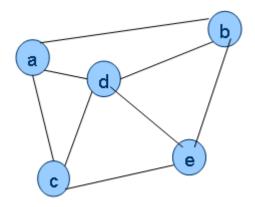

$$A+B*C/D$$

- 5. Given a telephone directory and a name of the subscriber, which searching method you would suggest for finding the telephone number of the given subscriber.
- 6. Name two data structures used to represent a graph.

PART-B

 $4 \times 12 = 48M$

1. Refer the following figure to solve the below problems.


- a) With the help of the diagram show how the new data "NAT" is inserted after "BAT" into the double linked list shown in above figure. (4M)
- b) Design the algorithm for the above. (8M)
- 2. a) Explain stack with basic operations using array (push and pop). (8M)
 - b) Evaluate the given postfix expression using stack (show with steps of operations)

 (4M)

 2 3 1 * + 9 -
- 3. a) Write an algorithm for a simple queue insertion to insert a new data. Use is Qfull() function in the algorithm to check whether queue is full or not.

 (8M)
 - b) Present positions of front = 2 and rear = 4, the data in Q: -, -, L, M, N, -What will happen to front & rear and Q after insert(O), insert(P), operations takes place in the Circular Queue? (4M)

- 4. a) Write recursive algorithms for different traversals in a binary tree with examples? (9M)
 - b) Consider the set S= {5, 27, -4, 12, 42, 16} (3M) Draw the Binary Search Tree 'T' by taking keys in the set S one at a time in the order. Assume the Binary Search Tree is initially empty.
- 5. a) Write an algorithm to sort the elements using heap sort. (8M)
 - b) Write the contents of the array after every pass using bubble sort. {70, 60, 10, 5} (4M)
- 6. a) Write Kruskal's algorithm with an example. (8M)
 - b) For the graph given below draw the following using (4M)
 - i) Adjacency list representation
 - ii) Adjacency matrix representation
