H.T.No. \square
Code No: EE1509

I B. Tech II Semester Supplementary Examinations, December 2017 CIRCUIT THEORY - I
 (Electrical and Electronics Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Derive the expression for equivalent resistance when ' n ' resistances are connected in series.
2. Explain the terms tree and co-tree with an example.
3. Define average value of an alternating quantity.
4. What is quality factor? Explain its significance.
5. State superposition theorem.
6. Define magnetic flux and magnetic field density.

PART-B

$$
\begin{equation*}
4 \times 12=48 M \tag{6M}
\end{equation*}
$$

1. a) Explain the classification of energy sources.
b) Find the current \boldsymbol{I} in the circuit shown in Figure 1.

2. a) Explain the procedure for obtaining fundamental tie - set matrix of a given network. (6M)
b) Obtain the dual network for the circuit shown in Figure 2.

Fig. 2
3. a) Determine the R.M.S value for the waveform shown in Figure 3.

Fig. 3
b) A resistor of 50Ω, inductor of 0.1 H and a capacitor of $50 \mu \mathrm{~F}$ are connected in series. A supply voltage of $230 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across the series combination. Calculate the following:
(6M)
i) impedance
ii) current drawn by the circuit
iii) power factor
iv) active and reactive powers consumed by the circuit
4. a) Show that the locus of current in an $\mathrm{R}-\mathrm{L}$ circuit with variable R is a semicircle. Find the radius and centre of the circle.
b) A series R-L-C circuit consists of a resistance of $1 \mathrm{k} \Omega$ and an inductance of 100 mH in series with capacitance of $10 \mu \mathrm{~F}$. If an A.C voltage of 100 V is applied across the combination, determine the resonant frequency, band width, quality factor, half power frequencies, the voltage across inductor and capacitor at resonance.
(6M)
5. Obtain the Thevenin's and Norton's equivalent circuits between the terminals 'ab' for the circuit shown in Figure 4 and hence find the current through 4Ω resistor.

6. a) Derive the expression for equivalent inductance of two coils in series with
i) series aiding
ii) series opposition.
b) Two similar coils connected in series give a total inductance of 600 mH and when one of the coils is reversed, the total inductance is 300 mH . Determine mutual inductance between the coils and coefficient of coupling.

