$H T N_{\Omega}$					
11.1.110.					

Code No: EE1509 GEC-R14

I B. Tech II Semester Supplementary Examinations, December 2017 CIRCUIT THEORY – I

(Electrical and Electronics Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Derive the expression for equivalent resistance when 'n' resistances are connected in series.
- 2. Explain the terms tree and co-tree with an example.
- 3. Define average value of an alternating quantity.
- 4. What is quality factor? Explain its significance.
- 5. State superposition theorem.
- 6. Define magnetic flux and magnetic field density.

PART-B

 $4 \times 12 = 48M$

1. a) Explain the classification of energy sources.

(6M)

b) Find the current *I* in the circuit shown in Figure 1.

(6M)

- 2. a) Explain the procedure for obtaining fundamental tie set matrix of a given network. (6M)
 - b) Obtain the dual network for the circuit shown in Figure 2. (6M)

3. a) Determine the R.M.S value for the waveform shown in Figure 3.

- b) A resistor of 50Ω , inductor of 0.1H and a capacitor of $50\mu F$ are connected in series. A supply voltage of 230V, 50Hz is connected across the series combination. Calculate the following: (6M)
 - i) impedance
- ii) current drawn by the circuit
- iii) power factor
- iv) active and reactive powers consumed by the circuit
- 4. a) Show that the locus of current in an R L circuit with variable R is a semicircle. Find the radius and centre of the circle. (6M)
 - b) A series R-L-C circuit consists of a resistance of $1k\Omega$ and an inductance of 100mH in series with capacitance of $10\mu F$. If an A.C voltage of 100V is applied across the combination, determine the resonant frequency, band width, quality factor, half power frequencies, the voltage across inductor and capacitor at resonance. (6M)
- 5. Obtain the Thevenin's and Norton's equivalent circuits between the terminals 'ab' for the circuit shown in Figure 4 and hence find the current through 4Ω resistor. (12M)

- 6. a) Derive the expression for equivalent inductance of two coils in series with
 - i) series aiding
- ii) series opposition.

(6M)

(6M)

b) Two similar coils connected in series give a total inductance of 600mH and when one of the coils is reversed, the total inductance is 300mH. Determine mutual inductance between the coils and coefficient of coupling. (6M)
