Code No: PH 1501 R 14

I B. Tech I Semester Regular Examinations, January 2015

ENGINEERING PHYSICS

(Common to Civil Engineering, Electrical and Electronics Engineering and Mechanical Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **Part-B.**

PART-A

 $6 \times 2 = 12M$

- 1. Define interference of light.
- 2. What is population inversion.
- 3. What are lattice parameters.
- 4. What is internal filed in dielectrics.
- 5. What is Meissnereffect.
- 6. Sketch (7 3 2) plane in cube.

PART-B

 $4 \times 12 = 48M$

- a) Explain how Newton's rings are formed in the reflected light. Derive an expression for diameters of dark and bright rings.
 - b) Find the thickness of the half wave plate, when the wavelength of light is equal to 5890 A⁰ and $\mu_o = 1.55$ and $\mu_e = 1.54$
- 2. a) With the help of neat diagrams explain the construction and working of He-Ne gas laser. **8M**
 - b) Explain the principle of optical fiber.
- 3. a) Describe the seven crystal systems with neat diagrams **8M**

	b)	What are Miller indices . How they are obtained.	4M
4.	a)	Explain electronic polarization in atoms and obtain an expression for	
		electronic polarizability in terms of radius of the atom.	8M
	b)	Write any four applications of super conductor.	4M
5.	,	Derive an expression for the number of electrons per unit volume in the conduction band of N- type semiconductor.	6M
	b)	Distinguish between direct and indirect band gap semiconductors	6M
6.	a)	Derive time independent Schrodinger's wave equation.	8M
	b)	What are assumptions of classical free electron theory of metals.	4M
