Code: 13A04409

R13

B.Tech II Year II Semester (R13) Regular Examinations May/June 2015

PRINCIPLES OF COMMUNICATIONS

(Electronics and Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) List two differences between analog and digital signals.
- (b) Define noise and classify sources of noise.
- (c) What is the need for modulation?
- (d) What are the advantages and disadvantages of angle modulation?
- (e) With reference to AM, define modulation index or depth of modulation.
- (f) State Carson's rule for determining approximate bandwidth of FM signal.
- (g) What is aliasing effect?
- (h) What is granular noise? How it is reduced?
- (i) Define entropy.
- (j) Define rate of information.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) With a neat block diagram, explain an electrical communication system.
 - (b) What are the different types of communications? Explain.

OR

3 Explain about: (i) Multiple noise sources. (ii) Noise in reactive circuits.

UNIT – II

- 4 (a) Explain DSB-SC generation using balanced modulator circuit.
 - (b) Verify that the modulation efficiency in AM, under sinusoidal tone modulation is 33%.

OR

- A modulation signal 5cos2π 15 × 10³ t, angle modulates a carrier $A \cos \omega_c t$.
 - (a) Find the modulation index and the bandwidth for (i) the FM system. (ii) the PM system.
 - (b) Determine the change in the bandwidth and the modulation index for both FM and PM, if fm is reduced to 5 KHz. Assume $K_p = K_f = 15 \text{ kHz/v}$.

UNIT - III

- 6 (a) Distinguish between natural sampling and flat-top sampling.
 - (b) Explain the generation and detection of PWM signal with neat diagrams.

OR

- 7 (a) Explain the concept of TDM with an example.
 - (b) Explain briefly about asynchronous multiplexing.

UNIT – IV

- 8 (a) Explain the working of elements of PCM system with neat block diagram.
 - (b) Explain the limitations of delta modulation with neat diagrams.

OR

9 Explain DPSK modulator and DPSK demodulator with block diagram.

UNIT – V

Apply the Shannon-Fano coding procedure for the following message ensemble:

$$[X] = [x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7]$$

 $[P] = [0.4 \quad 0.2 \quad 0.12 \quad 0.08 \quad 0.08 \quad 0.08 \quad 0.04]$

Take M = 2.

OF

- 11 (a) What is systematic linear block code? How it is generated?
 - (b) The generated polynomia (17,4) and code (12) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\)