Code: 13A04401

B.Tech II Year II Semester (R13) Regular & Supplementary Examinations May/June 2016

PULSE & DIGITAL CIRCUITS

(Common to ECE and EIE)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) What is meant by linear wave shaping?
 - (b) How can an uncompensated attenuator be modified as a compensated attenuator?
 - (c) List the applications of voltage comparators.
 - (d) State Clamping circuit theorem.
 - (e) What is the main advantage of an emitter-coupled monostable multivibrator over collector-coupled monostable multivibrator?
 - (f) What is meant by loading in a bistable multivibrator?
 - (g) Draw a current sweep circuit.
 - (h) Define the terms phase delay and phase jitter.
 - (i) List the applications of sampling gates.
 - (j) List the disadvantages of ECL.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

- 2 (a) A ramp $V_i = \alpha$ t is applied as input to a low-pass RC circuit. Derive the expression for the output voltage. And also draw the typical waveforms.
 - (b) A 20 KHz square wave is applied to a RC differentiating circuit, with R = 4 K Ω , it produces the output with a tilt of 5%. Calculate the value of the capacitor and lower 3-dB frequency.

OR

- 3 (a) Derive the expression for percentage tilt, 'P' when a square wave is input to a high-pass RC circuit.
 - (b) An oscilloscope test probe shown below has a cable capacitance of 50pF. The input impedance of oscilloscope is 1 M Ω in parallel with 5pF. Find the value of the capacitor for better performance.

Contd. in page 2

Code: 13A04401

UNIT – II

4 (a) For the two-level clipper in Figure below, the input varies linearly from 0 to 150 V. Plot the transfer characteristic and obtain the output voltage. Assume ideal diodes.

(b) What is meant by synchronized clamping?

OR

- 5 (a) Explain the effect of diode characteristics on clamping voltage.
 - (b) Discuss any two applications of voltage comparators.

(UNIT – III)

In a Schmitt trigger circuit shown below, with two 7N4418 n-p-n epitaxial planar silicon transistors, the h_{FE} of the transistors is 70. The circuit is energized from a power supply voltage $V_{CC} = 10 \text{ V}$. The resistors in the circuit are $R_s = 3.3 \text{ K}\Omega$, $R_{c1} = 2.2 \text{ K}\Omega$, $R_{c2} = 820 \Omega$, $R_1 = 1.8 \text{ K}\Omega$, $R_2 = 6.8 \text{ K}\Omega$ and $R_e = 4.7 \text{ K}\Omega$. Determine the two voltages associated with upper-tripping point and lower-tripping point.

OR

- 7 (a) Draw and explain the operation of collector-coupled astable multivibrator.
 - (b) Distinguish between symmetrical triggering and unsymmetrical triggering.

- 8 (a) Define the three errors that specify deviation from linearity.
 - (b) Explain the basic principle of a bootstrap sweep generator. Draw the circuit and explain its operation.

OR

- 9 (a) Explain the synchronization of a sweep circuit with symmetrical signals.
 - (b) Write a brief note on frequency division in a sweep circuit.

[UNIT - V]

- 10 (a) Draw the circuit of a bidirectional sampling gate and derive the expression for its gain.
 - (b) Explain about reduction of pedestal in a gate circuit.

OR

- 11 (a) With a neat sketch explain the working of a DTL NAND gate.
 - (b) Compare various logic families.