Code: 13A05406

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017

DESIGN & ANALYSIS OF ALGORITHMS

(Common to CSE and IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) What is meant by Asymptotic notation?
 - (b) What is an articulation point in a graph?
 - (c) What is a comparison tree?
 - (d) What is an optimal solution?
 - (e) Explain 8-queens problem.
 - (f) What is bi-connected component?
 - (g) Define reduction source problem.
 - (h) How many spanning trees can be generated from a graph with 4 nodes?
 - (i) What is the difference between 0/1 knapsack and ordinary knapsack?
 - (j) What is the worst case complexity in quick sort, why?

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 The pre-order and post-order sequences of a binary tree do not uniquely define binary tree. Justify your answer.
- 3 If matrices $A = \begin{bmatrix} 9 & 4 & 6 & 7 \\ 7 & 8 & 1 & 4 \\ 4 & 3 & 2 & 6 \\ 5 & 3 & 0 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 7 & 6 & 2 & 1 \\ 3 & 9 & 0 & 3 \\ 2 & 5 & 2 & 9 \\ 3 & 2 & 4 & 7 \end{bmatrix}$. Implement Strassen's matrix multiplication on A and B.

 UNIT II
- 4 (a) Write an algorithm of Prim's minimum spanning tree.
 - (b) Find the optimal solution of the knapsack instance n = 7, M = 15, (p1, p2, ...p7) = (10, 5, 15, 7, 6, 18, 3) and <math>(w1, w2,w7) = (2, 3, 5, 7, 1, 4, 1).

OR

- 5 (a) Define merging and purging rules in 0/1 knapsack problem.
 - (b) Write an algorithm for all pairs shortest path. Explain with an example.

(UNIT – III)

6 What is graph coloring? Write an algorithm for it and explain with an example.

OR

7 Write an algorithm to find articulation point in a graph.

[UNIT - IV]

- 8 What is bounding? Explain the following with an example.
 - (a) Job sequencing with deadlines.
 - (b) FIFO branch and bound.
 - (c) LC branch and bound.

OR

9 Write an algorithm for finding transitive closure with an example.

UNIT – V

Prove that chromatic ninth recision droblem is NP-bandete. COM

OR

11 State and prove Cook's theorem.
