Code.No.: EC1915 R14

M.Tech II Semester Regular Examinations, September 2015 CODING THEORY AND APPLICATIONS

(Digital Electronics & Communication Systems)

Time: 3 Hours Max. Marks: 60

Note:	Answer	Δητ	Five	Questions.	Δ11 (Onestions	Carry	ferina	marks
MOLE:	HII2MEL	Ally	LIVE	Questions.	AII (Questions	carry	equai	marks.

1.	,	State and explain Shanon's first fundamental theorem. Define Entropy? Also explain what are joint and conditional entropy?	(6M) (6M)
2.	ŕ	Define (n, k) block code. Show that the minimum distance of a liblock code is equal to the minimum weight of its nonzero code words. (Draw the circuit diagram of a (6, 3) systematic Linear Block Code encepted using parity check equations P0 = U0 XOR U2; P1 = U0 U1; P2 = U1 XOR U2	(6M) oder
3.	•	The cyclic binary code defined by the generator polynomial	(6M) (6M)
4.	·	Draw the block diagram of Trellis Coded modulation system. Disc	(6M)
5.	·	Draw the code tree for $(3, 1, 2)$ code with $L = 5$ and decode the sequen	(6M)
6.	,		(6M) (6M)
7.	•	•	(6M) (6M)
8.	•	Write a note on: i) Shortened cyclic codes	(6M) (6M)
			•