	H.T.No.										
--	---------	--	--	--	--	--	--	--	--	--	--

Code No: MA1902 GEC-R14

M. Tech I Semester Regular/Suppl. Examinations, January 2017

COMPUTATIONAL METHODS IN ENGINEERING

(Common to Structural Engineering & Machine Drawing)

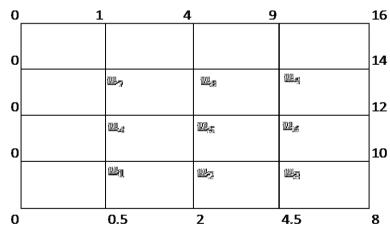
Time: 3 Hours Max. Marks: 60

Note: Answer any FIVE questions. All Questions carry equal Marks.

 $5 \times 12 = 60M$

1. Solve the following system of equations by Relaxation method:

$$3x+9y-2z=11;$$


$$4x+2y+13z=24$$
;

$$4x-4y+3z = -8 (12M)$$

2. Solve the following systems by Newton-Raphson method.

$$x^2 + y^2 = 1, y = x^3$$

- 3. Solve the boundary value problems $y^{11} 64y + 10 = 0$, y(0) = y(1) = 0 by shooting method.
- 4. Solve the Laplace's equation $\nabla^2 u = 0$ in the domain of the following figure.

5. Solve the partial differential equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 4}{\partial x^2}$$

Subject to the conditions $u(x,0)=sin\pi x$, $0 \le x \le 1$; u(0,t)=u(1,t)=0, using Crank-Nicholson method.

6. Calculate the coefficient of correlation between the marks obtained by a batch of 100 students in Accountancy and statistics as given below:

Marks in	Marks in Accountancy									
Statistics	20-30	30-40	40-50	50-60	60-70	Total				
15-25	5	9	3	-	-	17				
25-35	-	10	25	2	-	37				
35-45	-	1	12	2	-	15				
45-55	-	-	4	16	5	25				
55-65	-	-	-	4	2	6				
Total	5	20	44	24	7	100				

7. Use penality (Big-M) method to solve the following LP problem:

Min z=
$$3x_1 - x_2$$

Subject to $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$
 $x_2 \ge 4$
and $x_1 + x_2 \ge 0$

8. Use Branch-and-Bound technique to solve the following problem.

Max
$$z= 7x_1 + 9x_2$$

Subject to

$$-x_1 + 3x_2 \le 6$$

 $7x_1 + x_2 \le 35$
and $0 \le x_2, x_2 \ge 7$
