## H.T.No.

## Code No: ME1901

## M. Tech I Semester Supplementary Examinations, February 2018 ADVANCED MECHANICS OF SOLIDS

(Machine Design)

| Time: 3 Hours                                                 | Max. Marks: 60      |
|---------------------------------------------------------------|---------------------|
| Note: Answer any FIVE questions. All Questions carry equal Ma | rks.                |
|                                                               | $5 \times 12 = 60M$ |

- 1. The state of stress at a point is given by  $\sigma_{xx}$  = -90MPa,  $\sigma_{yy}$  = -60 MPa,  $\sigma_{zz}$  = 40MPa,  $\sigma_{xy}$  = 70 MPa,  $\sigma_{yz}$  = -40 MPa, and  $\sigma_{zx}$  = -55MPa.
  - i) Determine the stress invariants  $I_1, I_2, I_3$  and three principal stresses and shear stress. (8M)
  - ii) Show that  $I_1,I_2$ ,  $I_3$  are same relative to (x,y,z) axis and relative to principal axis (1,2,3)

(4M)

- 2. Derive Winkler Bach formula for bending of curved beams. (12M)
- 3. Locate the shear center for the beam cross section shown in Figure 1. The walls of the cross section have constant thickness t = 2.00mm. (12M)



Figure 1

| 4. | a) | Derive the deflection in straight beams when subjected to nonsymmetrical |            |           |         |        |    |          |       |      |           |    |     |    |
|----|----|--------------------------------------------------------------------------|------------|-----------|---------|--------|----|----------|-------|------|-----------|----|-----|----|
|    |    | bending                                                                  | <b>5</b> . |           |         |        |    |          |       |      |           |    | (6M | I) |
|    | b) | Derive                                                                   | the        | allowable | bending | moment | in | straight | beams | when | subjected | to | non | -  |

- symmetrical bending. (6M)
- 5. a) Write equilibrium and compatibility conditions of elastic solids. (6M)
  - b) Explain Airy's stress function.
- 6. For a circular disk of inner radius a, outer radius b, and constant thickness  $t \ll b$ , the formulas for stress-strain relation in polar coordinates are (where  $\mu = \text{Poisson ratio}$ ).

$$\sigma_{rr} = \frac{E}{1-\mu^2} (\epsilon_{rr} + \mu \epsilon_{\theta\theta}) - \frac{E\alpha T}{1-\mu} \text{ and } \sigma_{\theta\theta} = \frac{E}{1-\mu^2} (\mu \epsilon_{rr} + \epsilon_{\theta\theta}) - \frac{E\alpha T}{1-\mu}]$$
  
i) Derive the equation  $\sigma_{rr \ (max)}$  at  $r = \sqrt{ab}$  (6M)

ii) Derive the equation 
$$\sigma_{\theta\theta \ (max)}$$
 at  $r = a$  (6M)

GEC-R14

(6M)

- 7. The aluminum hollow thin wall torsion member in figure 2 has dimensions as shown. Its length is 3m. If the member is subjected to the torque T=11 KN-m.Take G=27.1Gpa
  - i) Determine the maximum shear stress.
  - ii) Determine the angle of twist.



Figure 2(All dimensions are in mm)

8. Define stress function and derive the stress function equation for 2-dimensional problem when the weight of the body is taken into consideration. (12M)

```
*****
```

(6M)

(6M)