H.T.No. \square
Code No: ME1522
GEC-R14

III B. Tech I Semester Regular / Suppl. Examinations, November 2017 PRINCIPLES OF MACHINE DESIGN

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

1. a) Define poisson's ratio.
b) Write the bending equation for design of shaft.
2. Describe Mohr's circle.
3. Draw the S-N Curve and discuss its features.
4. What is relationship between thickness of plate and throat of a fillet weld?
5. What is cotter joint? Classify cotter joints?
6. What are requirements of good coupling? Give at least two applications of couplings.

PART-B

$$
4 \times 12=48 M
$$

1. A shaft is transmitting 95 kW at 300 r.p.m. If the allowable shear stress in the material is 60 MPa , find the suitable diameter for the shaft. The shaft is not to twist more than 1^{0} in a length of 2.5 meters. Take G=80GPa.
(12M)
2. A point in a strained material is subjected to mutually stress of $600 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and 400 $\mathrm{N} / \mathrm{mm}^{2}$ (compressive). It is also subjected to a shear stress of $100 \mathrm{~N} / \mathrm{mm}^{2}$. Draw Mohr's circle and find the principal stresses and maximum shear stress. Also compare the stresses analytically.
3. A solid circular shaft made of steel Fe620 ($\mathrm{S}_{\mathrm{ut}}=620 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{S}_{\mathrm{yt}}=380 \mathrm{~N} / \mathrm{mm}^{2}$) is subjected to an alternating bending moment varies from $-200 \mathrm{~N}-\mathrm{m}$ to $+400 \mathrm{~N}-\mathrm{m}$. The shaft is ground and expected reliability is 90%.The theoretical stress concentration factor is 1.6 and the notch sensitivity factor is 0.9 . Assume size factor $=0.85$, Factor of Safety $=2$. Determine the shaft diameter for infinite life using
i) Soderberg method
ii) Goodman method.
4. A knuckle joint is required to withstand a tensile load of 25 kN . Design the joint if the permissible stresses are $\sigma t=56 \mathrm{MPa} ; \tau=40 \mathrm{MPa}$ and $\sigma c=70 \mathrm{MPa}$.
5. A line shaft rotating at 200 r.p.m. is to transmit 20 kW . The allowable shear stress for the material of the shaft is 42 MPa . If the shaft carries a central load of 900 N and is simply supported between bearing 3 metre apart, determine the diameter of the shaft. The maximum tensile or compressive stress is not to exceed 56 MPa .
6. A bracket is riveted to a column by 6 rivets of equal size as shown in Figure. It carries a load of 60 kN at a distance of 200 mm from the centre of the column. If the maximum shear stress in the rivet is limited to 150 MPa , determine the diameter of the rivet.
