\square

Code No: CT1509

GEC-R14

III B. Tech II Semester Regular Examinations, April 2017 COMPILER DESIGN (Information Technology)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Construct Regular Expression to identify floating point numbers
2. Define left recursion
3. Construct $L R(0)$ items for the grammar $S \rightarrow S(S) / \varepsilon$
4. How the value of inherited attribute is computed?
5. Convert the given infix expression into postfix expression.

$$
(a+b) *(c+d)(a+b+c)
$$

6. What is inter procedural optimization?

PART-B

$4 \times 12=48 M$

1. a) Discuss various phases of compiler. Explain the result of each phase for the example given below.
Position=initial+ rate*60
b) Identify the lexemes that make up the tokens in the following program segment. Indicate corresponding token and pattern
void swap(int i , int j)
\{
int t;
$\mathrm{t}=\mathrm{i}$;
$\mathrm{i}=\mathrm{j}$;
$j=t$;
\}
2. a) Construct LL(1) Passing table for grammar
$\mathrm{E} \rightarrow \mathrm{TE}^{1}$
$\mathrm{E}^{1} \rightarrow+\mathrm{TE}^{1} / \varepsilon$
$\mathrm{T} \rightarrow \mathrm{FT}^{1}$
$\mathrm{T}^{1} \rightarrow{ }^{*} \mathrm{FT}^{1} / \varepsilon$
$\mathrm{F} \rightarrow(\mathrm{E}) / \mathrm{id}$
And parse the string $\mathrm{id}+(\mathrm{id} * \mathrm{id})$
b) Find FIRST and FOLLOW of following grammar

$$
\begin{align*}
& S \rightarrow \mathrm{aBbSA} / \mathrm{d} \tag{4M}\\
& \mathrm{~A} \rightarrow \mathrm{eS} / \varepsilon \\
& \mathrm{B} \rightarrow \mathrm{f}
\end{align*}
$$

3. Construct SLR parsing table for the following grammar and find weather the string add\$ is accepted by the grammar or not.

$$
\begin{align*}
& \mathrm{S}->\mathrm{CC} \tag{12M}\\
& \mathrm{C}->\mathrm{aC} \mid \mathrm{d}
\end{align*}
$$

4. Write short notes on the following:
a) Write an SDD for flow control statements.
b) Symbol table organization for block structured languages.
5. a) Write the quadruple, triple, indirect triple for the expression $-(a * b)+(c+d)-(a+b+c+d)$
b) Explain methods for Basic block optimization.
6. a) Write an algorithm for generating code from DAG and construct DAG for $X=-a * b+-a * b$
b) What is peephole optimization? Explain its characteristics.
