H.T.No.					

Code No: CT1509 GEC-R14

III B. Tech II Semester Regular Examinations, April 2017

COMPILER DESIGN

(Information Technology)

Time: 3 Hours Max. Marks: 60

Note: All Questions from PART-A are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Construct Regular Expression to identify floating point numbers
- 2. Define left recursion
- 3. Construct LR(0) items for the grammar $S \rightarrow S(S)/\epsilon$
- 4. How the value of inherited attribute is computed?
- 5. Convert the given infix expression into postfix expression.

$$(a + b)*(c + d)(a + b + c)$$

6. What is inter procedural optimization?

PART-B

 $4 \times 12 = 48M$

1. a) Discuss various phases of compiler. Explain the result of each phase for the example given below.

Position=initial+ rate*60 (6M)

b) Identify the lexemes that make up the tokens in the following program segment. Indicate corresponding token and pattern (6M) void swap(int i, int j)

```
{
    int t;
    t=i;
    i=j;
    j=t;
}
```

2. a) Construct LL(1) Passing table for grammar

(8M)

E \rightarrow TE¹ E¹ \rightarrow +TE¹ / ϵ T \rightarrow FT¹ T¹ \rightarrow *FT¹/ ϵ F \rightarrow (E)/id And parse the string id+(id*id)

This parse the string is the is

	b)	S	ST and FOLLOW of following grammar ε aBbSA/d ε eS/ ε ε f	(4M)
3.		_	R parsing table for the following grammar and find accepted by the grammar or not.	weather the (12M)
4.	Wı	rite short n	otes on the following:	
	a)	Write an S	DD for flow control statements.	(6M)
	b)	Symbol tal	ole organization for block structured languages.	(6M)
5.	a)		quadruple, triple, indirect triple for the expression l)-(a+b+c+d)	(6M)
	b)	Explain m	ethods for Basic block optimization.	(6M)
6.	a)		lgorithm for generating code from DAG and constru	
		DA	G for X= -a*b+-a*b	(6M)
	b)	What is pe	ephole optimization? Explain its characteristics.	(6M)
