Code No: EC1503 GEC-R14

II B. Tech I Semester Supplementary Examinations, June 2017 BASIC ELECTRONICS

(Information Technology)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Differentiate active and passive components with examples.
- 2. Why the junction voltage of a forward biased P-N Junction diode decreases with increase in temperature? Explain.
- 3. Define Intrinsic stand-off ratio of UJT.
- 4. Define Peak Inverse Voltage (PIV). What is the PIV for a full wave rectifier using ideal diodes?
- 5. What is the need for biasing?
- 6. Differentiate between JFET and MOSFET.

PART-B

 $4 \times 12 = 48M$

- 1. a) Define Hall effect. Explain its significance, Derive an expression for Hall coefficient. (8M)
 - b) What do you mean by doping? Differentiate between intrinsic and extrinsic semiconductors. (4M)
- 2. a) Explain the diode current equation in forward and reverse bias conditions. (8M)
 - b) Sketch the V-I Characteristics of P-N Junction Diode. Explain temperature dependence of V-I Characteristics of P-N Junction Diode.

 (4M)
- 3. a) Explain the operation of SCR and its characteristics with neat diagram. (6M)
 - b) Which type of diode capacitance is used in the varactor diode? Explain the operation of varactor diode along with its applications. (6M)
- 4. a) How does a Zener diode differ from normal P-N Junction diode? Explain how the Zener diode acts as voltage regulator. (6M)
 - b) With the help of circuit diagram explain the working of full wave rectifier.

 Derive the expression for ripple factor of full wave rectifier. (6M)

- 5. a) Derive an expression for stability factor of a voltage divider bias circuit. (8M)
 - b) The current gain of a transistor with CE Configuration is 49. Calculate CB current gain and find the base current where the emitter current is 3mA.

 (4M)
- 6. a) Explain the construction and operation of an N-channel enhancement MOSFET. (6M)
 - b) Explain the working of JFET as Voltage Variable Resistor (VVR). (6M)
