\square
Code No: EC1515

II B. Tech II Semester Regular Examinations, April 2017 DIGITAL CIRCUITS (Electrical and Electronics Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. What is the largest positive number that can be stored in a computer that has 16 -bit word length and uses 2's complement arithmetic?
2. Draw the logical gates diagram for $\mathrm{X}=(\mathrm{AB}) \cdot(\overline{A+B})+\overline{E F}$.
3. a) What is the function of comparator?
b) What is encoding?
4. What are the advantages of ROM using as a PLD?
5. Define setup time and Hold time.
6. What are the capabilities of finite state machines?

PART-B

$$
4 \times 12=48 M
$$

1. a) Convert decimal 8.723 to both Hex and octal codes.
b) Express decimal digits $0-9$ in BCD code and 2-4-2-1 code. Determine which of the above codes are self-complementing.
2. a) Minimize following function using Tabular minimization. $F(A, B, C, D)=\sum m(6,7,8,9)+d(10,11,12,13,14,15)$.
b) What are the advantages and disadvantages of the tabular method compared to K-map?
3. a) Design a full adder with two half adders and OR gate.
b) Design an Excess-3 adder using 4-bit parallel binary adder and logic gates.
4. a) Draw and explain the CMOS circuit from the expression $\mathrm{Y}=\mathrm{A}^{\prime} . \mathrm{B}+\mathrm{C}$.
b) Give the description of CMOS 2 input AND gate and its circuit diagram.
5. a) Explain the following terms in connection with a flip-flop
i) Preset
ii) Clear
iii) Race-around condition
b) Draw the schematic circuit of Toggle flip-flop (T). Give its truth-table.

Justify the entries in the truth-table. (NAND gates only).
6. Realize the 4-bit serial binary adder using D flip flops and Mealy FSM. (12M)

