H.T.No.	
---------	--

Code No: EE1511

GEC-R14

II B. Tech I Semester Supplementary Examinations, January 2017

ELECTRO MAGNETIC FIELDS

(Electrical and Electronics Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from PART-A are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. State Coulomb's law.
- 2. Difference between conduction and convection current densities.
- 3. A certain magnetic field intensity is given in free space as $\overline{H} = \overline{20}(x\overline{a}_x + y\overline{a}_y)/(x^2 + y^2)A/m$. Find \overline{B} .
- 4. Define magnetic dipole and dipole moment.
- 5. Write Neumann's formulae.
- 6. Define Displacement current.

PART-B

 $4 \times 12 = 48M$

- 1. a) Volume charge density is given as $\rho_v = 10^{-5} e^{-100r} \sin \theta$ C/m³ for $0 \le r \le 1$ cm, and $\rho_v = 0$ for r> 1cm. Estimate \overline{E} at r=1m, $\theta = 90^{\circ}$, $\emptyset = 0$ by thinking in terms of a point charge. (6M)
 - b) A sheet of charge ρ_s =2nC/m² is present at the plane x=3 in free space, and a line charge ρ_L =20nC/m, is located at x=1, z=4 Find magnitude of Electric Field Intensity at origin. (6M)
- 2. a) State and prove the boundary conditions at the boundary between conductor and dielectric. (6M)
 - b) Given the field $\overline{D} = (20/\rho^2)$ (- $\sin^2 \emptyset \ \overline{a}_p + \sin 2\emptyset \ \overline{a}_\emptyset$) C/m². Find the total charge lying within the volume $1 < \rho < 2$, $0 < \emptyset < \pi/2$, 0 < z < 1 using Gauss law.

(6M)

- 3. a) Derive an expression for Magnetic Field Intensity due to circular current carrying wire. (6M)
 - b) A current element $1\overline{dL} = 10^{-3}(2\overline{a}_x + 4\overline{a}_y 4\overline{a}_z)$ A-m located at A (-5, 3,-2) produces a field \overline{dH} at B(3,-4,3). Find unit vector in the direction of \overline{dH} at B.

- 4. a) Two infinitely long parallel filaments each carry 50A in the $\overline{a_z}$ direction. If 2cm is spacing between filaments, find vector force per meter on each filament. (6M)
 - b) A differential current loop has dimensions of 1m by 2m and lies in uniform field $\overline{B0} = -0.6\overline{a_y} + 0.8\overline{a_z}$ T. The loop current is 4mA. Find torque on loop and also on the sides of loop. (6M)
- 5. a) Derive an expression for energy stored and density in a magnetic field. (6M)
 - b) Obtain the self inductance of a toroid of circular cross section of radius a and mean radius R with N uniformly and closely spaced turns around the coil. (6M)
- 6. a) Modify Maxwell's equations for time varying fields. (6M)
 - b) Consider a region where $\varepsilon = \varepsilon_0$, $\mu = \mu_0$, $\sigma = 0$, $\bar{J} = 0$ and $\rho_v = 0$. Use Maxwell's equations in Cartesian co-ordinates and assume that $\bar{E} = \bar{E} \bar{a}_x$ and $\bar{H} = H_y \bar{a}_y$. Find the second partial differential equation that E_x must satisfy.
