H.T.No.					

Code No: EC1530 GEC-R14

III B. Tech I Semester Regular/Suppl. Examinations, November 2017

DIGITAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **Part-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Discuss about the different noise effects in Delta Modulation.
- 2. What are the similarities between BPSK and BFSK?
- 3. Explain baseband receiver with neat diagrams.
- 4. Verify that I(X;Y)=I(Y;X).
- 5. What are the conditions to be satisfied by Hamming code?
- 6. What are the advantages of convolutional codes compared to linear block codes?

PART-B

 $4 \times 12 = 48M$

1. a) Compare PCM and DM Systems.

(8M)

- b) A given DM system operates with a sampling rate f_s and fixed step size Δ . If the input to the system is m (t) = α t for t>0. Determine the value of α for which slope over load occurs. (4M)
- 2. a) Explain the working of a Differential PSK (DPSK) with the help of a neat block diagram. (6M)
 - b) Draw the block diagram of coherent BFSK receiver and explain its operation. (6M)
- 3. a) Show that the impulse response of a matched filter is a time reversed and delayed version of the input signal. (6M)
 - b) Coherent orthogonal Binary FSK modulation is used to transmit two equiprobable symbol waveforms $s_1(t) = A\cos 2\pi f_1 t$ and $s_2(t) = A\cos 2\pi f_2 t$, where A *is* 4 *mV*. Assume an AWGN channel with noise power spectral density $N_0/2=0.5\times10^{-12}$ *W/Hz*. Using an optimal receiver and the relation. (6M)

$$Q(v) = \frac{1}{\sqrt{2\pi}} \int_{v}^{\infty} e^{-\frac{u^2}{2} du}$$

What is the bit error probability for a data rate of 5000 Kbps?

- 4. a) An analog signal is band limited to 4KHz, sampled at the nyquist rate, and the samples are quantized into 4 levels. The quantization levels Q₁, Q₂, Q₃ and Q₄ (messages) are assumed independent and occur with probabilities p₁= p₄=1/8 and p₂= p₃=3/8. Find the information rate R of the source. (6M)
 - b) Explain the concept of amount of information and its properties. (6M)

- 5. a) The generator polynomial of a (7, 4) Binary Cyclic code is defined by $g(x)=1+x^2+x^3$.

 Develop the encoder for this code. (6M)
 - b) Develop syndrome calculation decoder for this code and explain operation. (6M)
- 6. a) A particular convolutional code is described as an (n, k, L) code. What do these letters n, k and L represent? Explain. (3M)
 - b) The generators of a 1/3 rate convolutional code are: g1=[1 0 0]; g2=[1 0 1] and g3=[1 1 1]. Draw the encoder circuit, state and Trellis diagrams corresponding to this code. (9M)
