$\square$

## Code No: EC1530

GEC-R14

# III B. Tech I Semester Regular/Suppl. Examinations, November 2017 DIGITAL COMMUNICATIONS 

(Electronics and Communication Engineering)

## Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from Part-B. All Questions carry equal Marks.

## PART-A

$$
6 \times 2=12 M
$$

1. Discuss about the different noise effects in Delta Modulation.
2. What are the similarities between BPSK and BFSK?
3. Explain baseband receiver with neat diagrams.
4. Verify that $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{I}(\mathrm{Y} ; \mathrm{X})$.
5. What are the conditions to be satisfied by Hamming code?
6. What are the advantages of convolutional codes compared to linear block codes?

## PART-B

$\mathbf{4 \times 1 2 = 4 8 M}$

1. a) Compare PCM and DM Systems.
b) A given DM system operates with a sampling rate $f_{s}$ and fixed step size $\Delta$. If the input to the system is $m(t)=\alpha t$ for $t>0$. Determine the value of $\alpha$ for which slope over load occurs.
2. a) Explain the working of a Differential PSK (DPSK) with the help of a neat block diagram.
b) Draw the block diagram of coherent BFSK receiver and explain its operation.
3. a) Show that the impulse response of a matched filter is a time reversed and delayed version of the input signal.
b) Coherent orthogonal Binary FSK modulation is used to transmit two equiprobable symbol waveforms $s_{1}(t)=\mathrm{A} \cos 2 \pi f_{1} t$ and $s_{2}(t)=\mathrm{A} \cos 2 \pi f_{2} t$, where A is 4 mV . Assume an AWGN channel with noise power spectral density $N_{0} / 2=0.5 \times 10^{-12} \mathrm{~W} / \mathrm{Hz}$. Using an optimal receiver and the relation.

$$
\begin{equation*}
Q(v)=\frac{1}{\sqrt{2 \pi}} \int_{v}^{\infty} e^{-\frac{u^{2}}{2} d u} \tag{6M}
\end{equation*}
$$

What is the bit error probability for a data rate of 5000 Kbps ?
4. a) An analog signal is band limited to 4 KHz , sampled at the nyquist rate, and the samples are quantized into 4 levels. The quantization levels $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and $\mathrm{Q}_{4}$ (messages) are assumed independent and occur with probabilities $p_{1}=p_{4}=1 / 8$ and $p_{2}=p_{3}=3 / 8$. Find the information rate R of the source.
b) Explain the concept of amount of information and its properties.
5. a) The generator polynomial of a $(7,4)$ Binary Cyclic code is defined by $g(x)=1+x^{2}+x^{3}$. Develop the encoder for this code.
b) Develop syndrome calculation decoder for this code and explain operation.
6. a) A particular convolutional code is described as an ( $\mathrm{n}, \mathrm{k}, \mathrm{L}$ ) code. What do these letters $\mathrm{n}, \mathrm{k}$ and L represent? Explain.
b) The generators of a $1 / 3$ rate convolutional code are: $g 1=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$; $g 2=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ and $g 3=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. Draw the encoder circuit, state and Trellis diagrams corresponding to this code.

