| H.T.No. | |---------| |---------| Code No: EC1514 GEC-R14 ## II B. Tech I Semester Supplementary Examinations, May 2016 ## **ELECTRONIC DEVICES AND CIRCUITS** (Electronics and Communication Engineering) Time: 3 Hours Max. Marks: 60 **Note:** All Questions from **PART-A** are to be answered at one place. Answer any **FOUR** questions from **PART-B**. All Questions carry equal Marks. ## PART-A $6 \times 2 = 12M$ - 1. What is meant by Zener breakdown? - 2. Draw the circuit of a two-input diode AND gate. - 3. Define threshold voltage. - 4. Sketch the T-equivalent circuit model for MOSFET. - 5. Why common collector circuit is called as an emitter follower? - 6. Draw the circuit of a MOSFET CG amplifier. ## **PART-B** $4 \times 12 = 48M$ - 1. a) Sketch and explain the variation of charge density, electric field, and electrostatic potential within the transition region of a P+-N junction. (6M) - b) A one-sided abrupt Si N⁺-P junction has an area of 10^{-4} cm². If N_d is very high, N_a = 10^{23} m⁻³, ϵ_{Si} = 11.8, reverse voltage = 100V, T = 300°K, find the peak electric field at the junction and the depletion capacitance. (6M) - 2. a) Draw and briefly explain various models of diode forward characteristic. (8M) - b) Design a zener regulator to provide a regulated voltage of about 10V. The available 10V, 1W Zener is specified to have a 10V drop at a test current of 25mA. At this current its r_z is 7Ω . The raw supply available has a nominal value of 20V but can vary by as much as $\pm 25\%$. The regulator is required to supply a load current of 0 to 20mA. Design for a minimum Zener current of 5mA. Find V_{z0} and the required value of R. (4M) - 3. a) Draw and explain the capacitance-voltage characteristics of a MOS capacitor. (6M) - b) Consider a process technology for which L_{min} =0.4 μm , t_{ox} =8nm, μ_n =450 cm² /V-s, and V_t = 0.7v - i) Find Cox and k'n. - ii) For a MOSFET with W/L = $8\mu m/.8 \mu m$, calculate the values of V_{Gs} and V_{Dsmin} needed to operate the transistor in the saturation region with a dc current I_D = $100\mu A$ (6M) - 4. a) Draw and explain the i_D v_{DS} characteristics of an n-channel enhancement MOSFET. (6M) - b) An NMOS transistor having V_t = 1 V is operated in the triode region with v_{DS} small. With V_{GS} = 1.5 V, it is found to have a resistance r_{DS} of 1 k Ω . What value of V_{GS} is required to obtain r_{DS} =200 Ω ? Find the corresponding resistance values obtained with a device having twice the value of W. (6M) - 5. a) Draw and explain static CB output characteristics. (6M) - b) A transistor amplifier is fed with a signal source having an open-circuit voltage v_{sig} of 10 mV and an internal resistance R_{sig} of 100k Ω . The voltage v_i at the amplifier input and the output voltage v_0 are measured both without and with a load resistance R_L =10k Ω connected to the amplifier output. The measured results are as follows: (6M) | | V _i (mV) | V ₀ (mV) | |-------------------------------|---------------------|---------------------| | Without R _L | 9 | 90 | | With R _L connected | 8 | 70 | Find i) Overall Voltage gain ii) Input Resistance iii) Output Resistance - 6. a) Draw the circuit of a CE amplifier, its small-signal hybrid- Π model and derive expressions for R_{in} , A_v , and R_{out} . (8M) - b) A common-emitter amplifier is biased to operate at I_C = 0.2 mA and has a collector resistance R_C = 24 k Ω . The transistor has β =100 and a large Early voltage, V_A . The signal source having a resistance of 10 k Ω is directly coupled to the base, and C_{C1} and R_B are eliminated. Find R_{in} , and the voltage gain A_{vo} . ****