\square

II B. Tech II Semester Supplementary Examinations, January 2017 WATER RESOURCES ENGINEERING-I

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Explain the defects in Thiessen's polygon method of computing average rainfall over an area.
2. What are the factors affecting infiltration?
3. Explain Khosla's formula for computing run off over a catchment.
4. What are the methods available for determining peak flood discharges?
5. Explain various types of tube wells.
6. How do you access requirement of irrigation water?

PART-B

$4 \times 12=48 M$

1. a) How do you determine maximum and minimum rainfall within specified time?
b) What are the losses or abstractions from precipitation?
2. a) Explain estimation of evapotranspiration by Blaney-Criddle method. (6M)
b) An ayacut of 10,000 hectares has to be irrigated from a distributary, 70% in Kharif and 30% in Rabi. The average duty at head of distributary is 1000 hectares/cumec in Kharif and 2,500 hectares/cumec in Rabi. Determine total discharge required at the head of the distributary.
3. a) Explain the procedure for constructing a unit hydrograph from a flood hydrograph.
b) Ordinates of $4-\mathrm{h}$ unit hydrograph are given. Using this derive the ordinates of 2-h unit hydrograph for the same catchment.
(6M)

Time (h)	0	4	8	12	16	20	24	28	32	36	40	44
Ordinate of 4-h UH $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	0	20	80	130	150	130	90	52	27	15	5	0

4. a) Explain components of single peak hydrograph.
b) Flood frequency computations for a flash river are given below.

Return period (T) in years	50	100
Peak flood $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$	20,600	25,150

Estimate flood magnitude in the river with a returning period of 300 years through use of Gumbell's method. Assume sample size to be very large.
5. a) Derive an expression for discharge from a well fully penetrating a confined aquifer.
b) Design a tube well with the following data.

Yield required $=0.35$ cumecs
Thickness of confined aquifer $=30 \mathrm{~m}$
Radius of influence $=300 \mathrm{~m}$
Permeability coefficient $=90 \mathrm{~m} /$ day
Draw down $=5.50 \mathrm{~m}$
6. a) Explain various types of irrigation methods bringing out advantages and disadvantages.
(6M)
b) Explain sprinkler irrigation and drip irrigation methods bringing out suitable cropping pattern.

