\square

II B. Tech II Semester Regular Examinations, April 2017 MECHANICS OF SOLIDS - II (Civil Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. A point in a strained material is subjected to two mutually perpendicular stresses of $200 \mathrm{~N} / \mathrm{mm}^{2}$ and $100 \mathrm{~N} / \mathrm{mm}^{2}$, but the stresses being tensile in nature. Determine the normal and resultant stresses on an oblique plane inclined at 30° to the axis of the minor axis
2. State Maximum shear stress theory.
3. What are the laterally loaded struts?
4. What are the different methods used for finding deflection and slope of beam?
5. A thin cylindrical vessel of a mean dia ' D ' and of length ' L ' closed at both ends subjected to a water pressure ' P ' the value of hoop stress and longitudinal stress in the shell respectively?
6. Write a short note of deflection of beams in unsymmetrical bending.

PART-B

$$
\begin{equation*}
4 \times 12=48 M \tag{4M}
\end{equation*}
$$

1. a) Define principal planes and principal stresses.
b) A point in a strained material is subjected to a tensile stress of 120 MPa and a clock wise shear stress of 40 MPa . What are the values of normal and shear stresses on a plane inclined at 45° with the normal to the tensile stress.
2. A beam of uniform cross section and of length 1 carries a uniformly distributed load w/unit length. It is simply supported at the left hand end and at a point $1 / 4$ meters inside the right hand end. Find the deflection of the overhanging end using Unit load method.
3. A Strut, 30 mm diameter and 2.2 m long is hinged at both ends .it carries a UDLoad of $60 \mathrm{~N} / \mathrm{m}$ in addition to an axial thrust of 8000N .Calculate the maximum stress. $\mathrm{E}=200 \mathrm{GPa}$.
4. A beam $A B$ of length 8 m is simply supported at its ends and carries two point loads of 50 kN and 60 kN at a dist of 3 m and 5 m from left support respectively. Determine a) the deflection under each load b) maximum deflection. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=8.5 \times 10^{6} \mathrm{~mm}^{4}$.
5. Find the thickness of metal necessary for a cylindrical shell of internal diameter 150 mm to withstand an internal pressure of $50 \mathrm{~N} / \mathrm{mm}^{2}$.The maximum hoop stress in the section is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
6. A quarter circle beam of radius R curved in plan is fixed at end A and free at end B as shown in fig. It carries a vertical load P at its free end. Determine the deflection at the free end and also sketch the shear force, bending moment and torsional moment diagram. Assume flexural rigidity (EI) = torsional rigidity (GJ)

