| H.T.No. |  |  |  |  |  |
|---------|--|--|--|--|--|
|         |  |  |  |  |  |

Code No: CT1515 GEC-R14

## II B. Tech II Semester Regular Examinations, April 2017 DESIGN AND ANALYSIS OF ALGORITHMS

(Information Technology)

Time: 3 Hours Max. Marks: 60

**Note:** All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

or questions from rame 2. Im Questions early equal in

## PART-A

 $6 \times 2 = 12M$ 

- 1. Define an Algorithm. List out properties of an Algorithm.
- 2. Write union and find algorithms.
- 3. Define minimum-cost spanning tree.
- 4. Write general-method for dynamic programming.
- 5. Define graph coloring problem.
- 6. Define LC search and give one example.

## PART-B

 $4 \times 12 = 48M$ 

- 1. Explain all asymptotic notations with examples. (12M)
- 2. a) Explain and Write an algorithm for merge sort. (6M)
  - b) Analyze time complexity of merge sort. (6M)
- 3. a) Write an Algorithm for Job sequencing with deadlines. (6M)
  - b) Find a subset to job sequencing with deadlines, when

$$n=4$$
,  $(P1,P2,P3,P4)=(100,10,15,27)$  and  $(d1,d2,d3,d4)=(2,1,2,1)$ . (6M)

- 4. a) Write an algorithm for Dynamic knapsack problem. (6M)
  - b) Generate the sets  $S^i$  0 <= i <= 4, when (W1, W2, W3, W4) = (10,15,6,9) and (P1,P2,P3,P4) = (2,5,8,1). (6M)
- 5. a) Explain and write general recursive backtrack algorithm. (6M)
  - b) Write an algorithm for finding all Hamiltonian cycles. (6M)
- 6. a) Write control abstraction for LC Search. (6M)
  - b) Draw the portion of state space tree generated by LCBB for the following knapsack instance. n=5, m=12 (p1,p2.....p5) = (10,15,6,8,4) and

$$(w1, w2, \dots w5) = (4,6,3,4,2).$$
 (6M)

\*\*\*\*