H.T.No. \square
Code No: MA1506
GEC-R14

II B. Tech I Semester Supplementary Examinations, June 2017 DISCRETE MATHEMATICAL STRUCTURES
 (Common to Computer Science and Engineering and Information Technology)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from Part-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Construct the Truth table for p iff $\sim q$.
2. Define primitive recursive function.
3. Define semi-group and monoid.
4. Define bipartite graph and k-regular graph.
5. Find the chromatic number of K_{n} and a wheel graph with 4 vertices.
6. Solve the Recurrence Relation $u_{n}-7 u_{n-1}+10 u_{n-2}=0$.

PART-B

$$
\begin{equation*}
4 \times 12=48 M \tag{6M}
\end{equation*}
$$

1. a) Show that $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow[p \rightarrow r]$ is a tautology.
b) Show that $\sim p$ follows from the premises $p \rightarrow q, r \rightarrow \sim q$ and r.
2. a) Let $X=\{1,2, \ldots, 9\}$ and $R=\{(x, y) /(x-y)$ is divisible by 5$\}$. Show that R is an equivalence relation.
b) Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Draw the Hasse diagram of the partially ordered set $(\mathrm{P}(\mathrm{A}), \subseteq)$, where $\mathrm{P}(\mathrm{A})$ denotes the power set of A .
3. a) Show that the cube roots of unity forms a group under usual multiplication and find out inverse of each element.
b) Show that the identity element in a group is unique.
4. a) Find the Euler path to the following graph.

b) Draw the graph whose adjacency matrix is given by $A=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$ and find the degrees of the vertices.
5. Find the chromatic number and a spanning tree of the following graph.

6. Solve the Recurrence Relation $a_{n}+3 a_{n-1}-10 a_{n-2}=n^{2}+n+1$.
