H T No					
11.1.110.					

Code No: CT1505 GEC-R14

II B. Tech I Semester Regular / Suppl. Examinations, November 2017 DIGITAL LOGIC DESIGN

(Common to Computer Science and Engineering and Information Technology)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Given the two binary numbers X=1010100 and Y=1000011, perform the subtraction X-Y by using 2's complement.
- 2. Implement the Boolean function F = xy+x'y'+y'z with AND, OR and inverter gates.
- 3. Draw the logic diagram of Half adder.
- 4. Draw the logic diagram of 4X16 decoder constructed with two 3X8 Decoders with enable input.
- 5. Differentiate Latch and Flip flop.
- 6. Draw the logic diagram of a BCD ripple counter constructed from a four-bit binary ripple counter with asynchronous clear and NAND gate that detects the occurrence of count 1010.

PART-B

 $4 \times 12 = 48M$

- 1. a) Find i) 16's complement of B2FA.
 - ii) 9's Complement of 5,137

(4M)

- b) i) Convert the hexadecimal number 68BE to binary, and then convert it from binary to octal.
 - ii) Add the following numbers without converting them to decimal. (8M)

Binary numbers 1011 and 101

Hexadecimal numbers 2E and 34

2. a) Using K-map, simplify the Boolean function F=XY, to represent in SOP form where X(A,B,C,D)=ABC'+C'D+A'CD'+B'CD'

$$Y(A,B,C,D) = (A+B+C'+D')(B'+C'+D)(A'+C+D')$$
(6M)

b) Simplify the Boolean function F, together with the don't-care conditions d as given below $F(A,B,C,D)=\Sigma(4,5,7,12,13,14)$

$$d(A,B,C,D) = \Sigma(9,11,15)$$
 using k-map (6M)

3. a) Obtain the Boolean expression for the output (sum, carry and x) of the following logic circuit. (6M)

- b) Implement a Full adder circuit using only NAND gates. (6M)
- 4. a) Obtain the PLA programming table and logic diagram of a full adder. (6M)
 - b) Implement a Full adder circuit with a decoder. The adder inputs are A, B & C. The adder produces outputs S and C_0 . (6M)
- 5. a) Draw and explain the SR-latch using NAND and NOR Gates with suitable tables. (6M)
 - b) Draw the schematic circuit of JK Flip-Flop with negative edge triggering and explain the operation (6M)
- 6. a) Design a synchronous Modulo-6 counter using JK Flip-flops and NAND gates. (6M)
 - b) Design a 4-bit binary ripple counter with JK Flip-flops. (6M)
