Code No.: MA1502 R-14

I B.Tech. II Semester Regular Examinations, June 2015

MATHEMATICAL METHODS

(Common to Civil Engineering, Electrical & Electronics Engineering and Mechanical Engineering)

Time: 3 Hours Max.Marks: 60

Note: Answer **ALL** questions from **PART-A** at one place in the same order and Answer any **FOUR** questions from **PART - B**

PART-A

 $6 \times 2 = 12M$

- 1. Briefly explain False position method.
- 2. Write Newton's forward and Backward interpolation formulae.
- 3. Write formula for Modified Euler method.
- 4. Write Cauchy Riemann equations in polar form.
- 5. State and prove shifting theorem of Laplace transforms.
- 6. State and prove initial value theorem of Z-transforms.

PART-B

 $4 \times 12 = 48M$

- a) Find a real root of the equations x³ 4x 9 = 0 using the bisection method correct to three decimal places.
 - b) Find a real root of the equation $x^3 2x 5 = 0$ by method of false position correct to three decimal places. (6M)
- 2. a) Use Lagrange's interpolation formula to fit a polynomial to the following data. Hence find y (-2), y (1) and y (4).

$$X: -1 \quad 0 \quad 2 \quad 3$$

 $Y: -7 \quad 2 \quad 5 \quad 4$ (6M)

b) Compute y at x = 4.7 given that

3. a) Using Taylor's series method ,compute y(0.3) to three places of decimal from $\frac{dy}{dx} = 1+2xy$ given that y(0) =0 (6M)

- b) Compute y(0.1) and y (0.2) by using Runge Kutta method for the Differential equation $\frac{dy}{dx} = x + y$; y(0) = 1. (6M)
- 4. a) Derive Cauchy Riemann equation in cartesian coordinate system. (6M)
 - b) If f (z) is an analytic function of z prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2 \tag{6M}$$

- 5. a) Show that $L\left\{\frac{1}{t}f(t)\right\} = \int_{s}^{\infty} F(s)ds$, where $L\left\{f(t)\right\} = F(s)$ (6M)
 - b) Using Convolution theorem, evaluate $L^{-1}\left\{\frac{1}{\left(\mathbf{s}^2+1\right)\left(\mathbf{s}^2+9\right)}\right\}$ (6M)
- 6. a) Show that $Z(\cos n\theta) = \frac{z(z-\cos\theta)}{z^2 2z\cos\theta + 1}$ (6M)
 - b) Solve the difference equation $y_{n+2} 3y_{n+1} + y_n = 0$, $y_0 = -1$, $y_1 = 2$ using z transforms. (6M)
