H.T.No. \square
Code No: MA1501
GEC-R14

I B. Tech I Semester Regular/Supplementary Examinations, December 2016 MATHEMATICS-I
 (Common to All Branches)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Find the integrating factor of the linear differential equation $\frac{d y}{d x}+\frac{y}{x}=\operatorname{Tan} 2 x$.
2. Find the particular integral of $(D+1)^{2} y=e^{-x}$.
3. If $u=x^{2}-y^{2}, v=2 x y$, and $x=r \cos \theta, y=r \sin \theta$ find $\frac{\partial(u, v)}{\partial(r, \theta)}$.
4. Evaluate the integral $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$.
5. Find curl $\overline{\mathrm{F}}$, where $\overline{\mathrm{F}}=\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
6. Write the statement of Stoke's theorem.

PART- B

$4 \times 12=48 M$

1. a) Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$.
b) The number N of bacteria in the culture grows at a rate proportional to N . The value of N was initially 50 and increased to 150 in one hour, what will be the value of N after one and half hour.
2. a) Solve $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=e^{-2 x}$.
b) Solve $\left(D^{2}+2 D+3\right) y=\sin x$
3. a) If $u=x \sqrt{\left(1-y^{2}\right)}+y \sqrt{\left(1-x^{2}\right)}, v=\sin ^{-1} x+\sin ^{-1} y$, show that u, v are functionally related.
b) Find the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
4. a) Trace the curve $y^{2}(2 a-x)=x^{3}$.
b) Find the volume of the solid bounded by the planes $x=0, y=0$, $x+y+z=1$ and $z=0$.
5. a) Show that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.
b) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.
6. a) Find the work done in moving a particle in the force field $\bar{F}=3 x^{2} \bar{i}+(2 x z-y) \bar{j}+z \bar{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$.
b) Apply Green's theorem for $\int_{c}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, where c is bounded by $y=x$ and $y=x^{2}$.
