H.T.No.					

Code No: MA2502 GEC-R17

I B. Tech I Semester Regular Examinations, December 2017 LINEAR ALGEBRA AND INTEGRAL TRANSFORMS

(Common to Computer Science and Engineering and Information Technology)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **PART-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Using Echelon form of a matrix, find the rank of $\begin{bmatrix} 3 & 1 & 2 & 3 \\ 2 & -3 & -1 & -3 \\ 1 & 2 & 1 & 4 \end{bmatrix}$
- 2. Find the characteristic equation of the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$
- 3. Define index and signature in Quadratic form.
- 4. Find L[cos(at + b)].
- 5. Find $L^{-1}\left[\frac{3(s^2-2)^2}{2s^5}\right]$
- 6. Find Fourier Sine transform of $f(x) = e^{-ax}$, a>0.

PART-B

 $4 \times 12 = 48M$

1. a) Reduce
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$
 to normal form and hence find its rank. (6M)

- b) Solve completely the system of equations: x+y-2z+3w=0, x-2y+z-w=0, 4x+y-5z+8w=0, 5x-7y+2z-w=0; (6M)
- 2. a) Find the Eigen values and corresponding Eigen vectors of the matrix:

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 (8M)

b) If
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$
 express $A^6 - 4A^5 + 8A^4 - 12A^3 + 14A^2$ as polynomial in A. (4M)

3. Reduce the quadratic form $x_1^2+3x_2^2+3x_3^2-2x_2x_3$ to canonical form by an orthogonal transformation. (12M)

- 4. a) Find the Laplace transform of f(t), where $f(t) = e^{2t} + 4t^3 2\sin 3t + 3\cos 3t$ (8M)
 - b) Define unit step function and write Laplace transform of unit step function. (4M)
- 5. Using Laplace transform method, solve the differential equation $(D^2 + 1)y = Sin2t, t > 0$, if $y(0)=1, y^1(0)=0$. (12M)
- 6. a) Find the Fourier Sine transform of $f(x) = e^{-|x|}$ for $x \ge 0$ and a > 0. And show that $\int_0^\infty \frac{\alpha.Sinmx}{\alpha^2 + 1} d\alpha = \frac{\pi}{2} e^{-m}, m > 0$ (8M)
 - b) Find the Fourier cosine transform of e^{-3x} . (4M)
