H.T.No.

Code No: MA2501
GEC-R17
I B. Tech I Semester Regular Examinations, December 2017
LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS
(Common to Civil Engineering, Electrical and Electronics Engineering, Mechanical Engineering and Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 60
Note: All Questions from PART-A are to be answered at one place.
Answer any FOUR questions from PART-B. All Questions carry equal Marks.

PART-A

$$
6 \times 2=12 M
$$

1. Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$
2. Find the Eigen values of $A^{-1}-3 I$, if $\mathrm{A}=\left[\begin{array}{cc}4 & -3 \\ 2 & 9\end{array}\right]$
3. Find the orthogonal trajectory of $r=a \theta$.
4. Find $\frac{1}{\mathrm{D}^{2}+\mathrm{D}+3} \sin \mathrm{x}$
5. If $\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$ then find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
6. Solve $y p+x q=x y$.

PART-B

$$
4 \times 12=48 M
$$

1. a) Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$ by reducing to normal form.
b) Examine whether the following system of equations are consistent. If consistent, solve. $3 x+3 y+2 z=1, x+2 y=4,10 y+3 z=-2,2 x-3 y-z=5$.
2. Find the characteristic values and characteristic vectors of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right]$
3. a) Find the orthogonal trajectories of the family of confocal conics $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}+\lambda}=1$, where λ is a parameter.
b) A body is originally at $90^{\circ} c$ cools down to $70^{\circ} \mathrm{c}$ in 20 minutes. The temperature of the air is $40^{0} c$. What will be the temperature of the body after 33 minutes?
4. Solve $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{x} \sin x$.
5. a) If $u=3 x+2 y-z, v=x-2 y+z$ and $w=x+2 y-z$, then find the Jacobian.
b) In a plane triangle, find the maximum value of $\operatorname{Cos} A \cdot \operatorname{Cos} B \cdot \operatorname{CosC}$.
6. a) Form the differential equation by eliminating a and b from $\log (a z-1)=x+a y+b$.
b) Solve $\left(x^{3}+3 x y^{2}\right) p+\left(y^{3}+3 y x^{2}\right) q=2\left(x^{2}+y^{2}\right) z$.
