H.T.No.					

Code No: EE1507 GEC-R14

I B. Tech I Semester Supplementary Examinations, November 2017 BASIC ELECTRICAL ENGINEERING

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 60

Note: All Questions from **PART-A** are to be answered at one place.

Answer any **FOUR** questions from **Part-B.** All Questions carry equal Marks.

PART-A

 $6 \times 2 = 12M$

- 1. Explain the terms, Electrical Power and Electrical Energy.
- 2. Define the terms, time period and frequency of an alternating voltage.
- 3. What is the mathematical expression for torque equation of D.C.Motor?
- 4. What is the mathematical expression of induced e.m.f in the transformer?
- 5. What is the principle of operation of 3- Φ Induction Motor?
- 6. What is universal motor?

PART-B

 $4 \times 12 = 48M$

1. a) Explain KCL and KVL of an Electrical Circuit.

(6M)

b) Verify superposition theorem for the circuit shown in figure.1.

(6M)

- 2. a) Define the following terms.
 - i) RMS value of an alternating voltage.

(2M)

ii) Peak factor.

(2M)

iii) Average value of an alternating voltage.

(2M)

- b) Derive mathematical expression for R.M.S value of pure sinusoidal waveform and explain its importance. (6M)
- 3. Derive the expression for armature torque and shaft torque of DC Motor.

(12M)

4. a) Explain the constructional details of 1- Φ transformer.

(6M)

- b) A 1- Φ , 50Hz transformer has 75 turns on the primary winding and 375 turns on the secondary winding. The net cross sectional area of the core is 200cm^2 . If the primary winding is connected to 230V, 50 Hz supply. Find
 - i) emf induced in secondary winding.
 - ii) Maximum value of flux density in the core.

(6M)

- 5. a) A 3- Φ Induction motor is wound for 4 poles and is supplied from 50Hz supply. Calculate synchronous speed, rotor speed when slip is 3% and rotor frequency when rotor runs at 650RPM.
 - b) Derive mathematical expression for torque of three-phase Induction Motor. (6M)
- 6. Explain construction and working principle of stepper Motor. (12M)
