JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, November/December - 2016 SIGNALS AND SYSTEMS
(Common to ECE, EIE, ETM)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.
PART- A
1.a) Define even and odd components of the signal how do you get it.
b) Sketch the unit step function and signum function bring the relation between them.[3]
c) Distinguish between Series and Transform in the Fourier representation of a signal.[2]
d) Define and write the conditions of sampling theorem.
e) Characterize a Linear Time Invariant (LTI) System.
f) Express and derive the Relationship between Bandwidth and Rise time.
g) Write the Convolution property of Fourier Transform.
h) Distinguish between Cross Correlation and Auto Correlation.
i) Write the Fundamental difference between Continuous and Discrete time signals. [2]
j) Find the Z transform of $x[n]=u[-n]$.

PART-B

(50 Marks)
2.a) Explain orthogonality property between two complex functions $f_{1}(t)$ and $f_{2}(t)$ for a real variable t .
b) Define and derive the expression for evaluating mean square errors and its types.

OR

3. Find the Exponential Fourier series for the rectified Sine wave as shown in figure.

4. Obtain the Fourier transform of the following functions:
a) Impulse Signal
b) Single symmetrical Gate Pulse.

OR

5.a) Write about the types of Sampling and compare the Impulse Sampling, Natural and Flat top Sampling methods.
b) Describe about the Hilbert Transform and express its properties.
6. Explain the difference between the following systems with examples.
a) Linear and Non-linear systems.
b) Causal and Non-Causal systems.

OR

7. Define Time invariant and shift invariant systems and given the system function of a LTI system be $1 / \mathrm{jw}+2$ evaluate the output of the system for an input $(0.9)^{t} u(t)$. [10]
8.a) Discuss and Prove Properties of auto correlation function.
b) Explain briefly extraction of a signal from noise by filtering.

OR

9. Discuss the impact of convolution for find the system output and Use the Convolution theorem to find the spectrum of $\mathrm{x}(\mathrm{t})=\mathrm{A} \operatorname{Cos}^{2} \&_{\mathrm{c}} \mathrm{t}$.
10.a) State the properties of the ROC of Laplace Transform and its existances.
b) Find the step response of series RL circuit using Laplace transform method.

OR

11.a) Find the inverse Z-transform and ROC JLYHQ;] ORJD]).
b) Derive relationship between z and Laplace Transform and describe about the stability.

