JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November - 2015

CONTROL SYSTEMES ENGINEERING (Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 75

[3+7]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A (25 Marks)

What are the advantages of closed loop system compared to open loop system? [2] 1.a) [3] Discuss the effect of feedback on overall gain. b) Give the expression for the rise time of the step response for a second order system. [2] c) [3] Define the static error constants. d) How R-H criterion is useful in plotting root locus? [2] e) [3] What is Routh's stability criterion? f) [2] Draw the pole zero plot for lag-lead compensator. g) [3] What are the advantages of Bode plot? h) Define controllability. [2] i) [3] State any four properties of STM. j)

PART - B (50 Marks)

- 2.a) Give the f-v analogy of mechanical translational system and electrical system.
- b) Derive the transfer function of the mechanical system shown in figure 1.

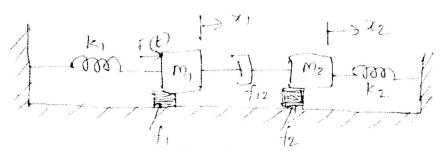


Figure.1 OR

- 3.a) Give the f-i analogy of mechanical rotational system and electrical system.
- b) Derive the transfer function of the mechanical system shown in figure 2. [3+7]

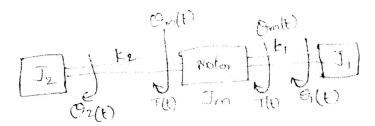


Figure.2

- 4.a) For a unity feedback system given by $G(s) = \frac{20(s+2)}{s(s+3)(s+4)}$.
 - i) Find the static error constants ii) Find the steady state error for r(t) = 3 u(t) + 5 tu(t).
 - b) Explain about standard test signals.

17+31

OR

- 5.a) A servo mechanism is characterized by the differential equation. $\frac{d^2c}{dt^2} + 6.4 \frac{dc}{dt} + 160 [0.46c r] = 0.$ Find the value of damping ratio.
 - b) Explain about time domain specifications.

[5+5]

- 6.a) Sketch the root locus of $G(s)H(s) = \frac{K}{s(s+2)(s^2+2s+5)}$.
 - b) What is the effect of adding poles to G(s)H(s).

[7+3]

OR

- What is the effect of adding zeros to G(s)H(s).
- b) Sketch the root locus plot of $G(s)H(s) = \frac{K}{s(s+1)(s+3)}$.

[3+7]

Draw the Bode magnitude and phase angle plots for the transfer function

$$G(s) = \frac{2000(s+1)}{s(s+10)(s+40)}.$$

[10]

- OR
- 9.a) What is compensator? Explain about lead compensator.
 - b) Explain about frequency domain specifications.

[6+4]

- 10.a) Derive STM using laplace transform method.
 - b) Diagonalize the system matrix given below.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}.$$

OF

- 11.a) What is observability? Explain the tests for observability.
 - b) Check whether the system represented by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \text{ is observable or not.}$$
 [4+6]

---00O00---