Code No: 114DH

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year II Semester Examinations, October/ November- 2016 PRINCIPLES OF ELECTRICAL ENGINEERING (Electronics and Communication Engineering)
Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Define transient response of an electrical circuit.
b) Differentiate the time constants of R-L and R-C series circuit.
c) Express h-parameters in terms of Y-parameters.
d) Find the image parameters of the network shown in figure below.

e) Differentiate stop band and pass band filters.
f) Explain the significance of attenuation in electronic circuits.
g) What are the two functions of a commutator in D.C. Machines?
h) Mentions the reasons for compounding D.C. Generator.
i) Write short notes on transformer cooling.
j) What is a transformer? Differentiate between step- up and step -down transformer.[3]

PART-B
(50 Marks)
2.a) Obtain the transient response of R-L series circuit excited by d.c source. Also, draw the graphs for voltage drops across R and L .
b) Determine whether RLC series circuit shown in figure 1 is under damped, over damped or critically damped. Also. find v_{I} DOG.
[5+5]

Figure: 1
OR
www.jntuonline.com
3.a) Obtain the transient response of R-L-C series circuit excited by d.c source. Also, draw the graphs for voltage drops across R, L and c .
b) A series R-L circuit has a constant voltage $V=10$ volts is applied at $t=0$. At what time does $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{L}}$. (Figure 2)
[6+4]

Figure: 2
4.a) Obtain the ABCD parameters for the network of figure 3.

Figure: 3
b) Determine Y-parameters using interconnection of two port networks for the network shown in figure 4.

Figure: 4
OR
5.a) Obtain the short circuit admittance parameters of the network of figure 5 and there by obtain the A, B, C, D parameters.

Figure: 5
b) Two identical sections of the network shown in figure 6 are connected in cascade. Obtain the transmission partiuters of hadweldodntedige . COM

6.a) Design an m-GHULYHœection high pass filter having a cut off frequency of 10 KHz R_{K} DQGI .+ \quad z. Find the attenuation at $\mathrm{f}=9.8 \mathrm{KHz}$ and 5 KHZ .
b) Design a symmetrical bridged T-type attenuator with attenuation of 20 dB and design LPSHGDQFHRI

OR

7.a) Design a constant K prototype high pass filter with a cut-off frequency of 5 KHZ working into an LPSHGDQFHRI \&DOFXODWHWKHSKDVHVKLIWDWWHQXimadetequqQGWK impedance at (i) 2.5 KHz (ii) 8 KHz .
b) Design a symmetrical lattice attenuator to have attenuation of 20 dB and characteristic impedance RI
8.a) \$’\&VKXQWPRWRUKDVDQDUPDWXUHUHVLVWDQFHRI DQGWDNHVDFXUUHQWRI\$ on full load. By how much must the main flux be reduced to raise the speed by 30% if the developed torque is constant?
b) Explain the procedure of conducting a SwiQEXUQHIVWHVW WREHFRQGXFWHGRQDGFVKX machine.

OR

9.a) A $20 \mathrm{KW}, 4$ pole d.c shunt generator has a terminal voltage of 250 V when running at USP7KHDUPDWXUHKDVDUHVLVWDQFHRIDQGFRQVLVWWdductors which are lap wound. The diameter of pole shoe circle is 0.38 m . The poles are 0.2 m long and subtend an angle of 60°. Calculate the flux density in the air gap. Neglect shunt field current.
b) Describe different methods of speed control of d.c motors. Also, state their advantages and disadvantages.
10.a) Draw the equivalent circuit of transformer . Explain how it can be simplified. Explain the advantages of simplification.
b) The constants of a single phase $50 \mathrm{~Hz}, 2200 / 220 \mathrm{~V}$ transformer is as follows:
H.V. side: $\mathrm{r}_{1}[\quad 15 \mathrm{~F} \quad 1 ; \mathrm{P} \quad 1$
L.V. side: r_{2} [2

Find the equivalent circuit parameters referred to (i) h.v. side and (ii) l.v. side. [6+4]
OR
11.a) Explain the effect of variations of frequency and supply voltage on Iron losses of a transformer.
b) A $75 \mathrm{KVA}, 11000 / 440 \mathrm{~V}$ single phase transformer has a primary winding having a UHVLVWDQFHRIDQGDUHDFWD\&FFHHVLVWDQFHDQGUHDFWDQFHRIWKHVHFRQGDU ZLQGLQJDUHDQGUHVSHFWL vely. Calculate the equivalent impedance
(i) referred to the primary side and (ii) referred to the secondary side. Also calculate the total copper loss in the transformertuonline.Com

