B.Tech II Year I Semester (R13) Regular & Supplementary Examinations December 2015

DISCRETE MATHEMATICS

(Common to CSE and IT)

Time: 3 hours

1

Max. Marks: 70

PART – A

(Compulsory Question)

- Answer the following: (10 X 02 = 20 Marks)
 - (a) Show the following implication without constructing the truth table: $(P \rightarrow Q) \rightarrow Q \Rightarrow P \lor Q$
 - (b) State the pigeonhole principle.
 - (c) State the properties of lattices.
 - (d) Let (L, \leq) be a lattice and a, b, c ϵ L. Then prove $a \lor b = b$ iff $a \leq b$
 - (e) In how many ways can 5 blue balls, 4 white balls and the rest 6 of different color balls be arranged in a row?
 - (f) Define semi group.
 - (g) What is the principle of mathematical induction?
 - (h) Define the following terms. Give one suitable example for each:(i) Euler path. (ii) Euler circuit.
 - (i) Write about graph traversal techniques.
 - (j) Write about isomorphic graphs.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Show that among any 4 numbers one can find 2 numbers so that their difference is divisible by 3
 - (b) Show that among any n+1 numbers one can find 2 numbers so that their difference is divisible by n

OR

3 (a) Let f: A _ R be defined by f(x) = (x-2) / (x-3), where A = R - {3}. Is the function of objective? Find f-1.
(b) Prove that (A-B) U (B-A) = (AUB) - (A_B) for any two sets A and B.

UNIT – II

4 Let (L, \le) be a lattice for any $a, b, c \in L$. Prove that $b \le c \Rightarrow a * b \le a * c \Rightarrow a Å b \pounds a Å c$.

OR

- 5 (a) What is binary relation? Give properties of binary relation.
 - (b) Let P(A) be the power set of any non empty set A, then prove that the relation Í of set inclusion is not an equivalence relation.

UNIT – III

- 6 (a) Show that the set N of natural numbers is a semi group under the operation x * y = max {x, y}. Is it a monoid?
 - (b) Show that the set Z with binary operation * such that $x^* y = x^y$ is not semi group.

OR

- 7 (a) In how many different ways can the letters of the word 'OPTICAL' be arranged so that the vowels always come together?
 - (b) In how many ways can a team of 5 persons can be formed out of a total of 10 persons such that two particular persons should not be included in any team?
 - (c) In a birthday party, every person shakes hand with every other person. If there was a total of 28 handshakes in the party. The party handshakes in the party. The party handshakes hand be a shake a state of the party of the

Code: 13A05302

- 8 (a) Suppose that m is a fixed integer and $x \equiv y \mod m$. Then for every integer n > = 1, $x^n \equiv y^n \mod m$. Prove this by mathematical induction
 - (b) Suppose that $f(n) = n^*f(n-1)$ with f(1) = 1. Prove by induction that $f(n) = n^*(n-1)...3^*2^*1$.

OR

- 9 (a) Solve the Recurrence relation $a_n = a_{n-1} + 6_{an-2}$ given the initial conditions $a_0 = 3$ and $a_1 = 6$.
 - (b) Solve the recurrence relation $a_n = 7 a_{n-1} 16 a_{n-2} + 12 a_{n-3} + n 4^n$, given $a_0 = -2$, $a_1 = 0$, $a_2 = 5$.

UNIT – V

- 10 (a) Explain Kruskal's algorithm with example.
 - (b) When it can be said that two graphs G1 and G2 are isomorphic?

OR

- 11 (a) Explain DFS algorithm with an example.
 - (b) Write about graph coloring.

www.jntuonline.com